PHYSICS FORMULAE High School Physics 2-19-2018

MECHANICS		ELECTRICITY AND	
$-\Delta x$	$\Delta x = \text{displacement}$	MAGNETISM	
v = -	(change of position)		
Δl		$r q_1 q_2$	E = electric field
$a = \frac{\Delta v}{\Delta v}$	– V – average velocity	$F_e = K - \frac{r^2}{r^2}$	intensity
Δt	v – average verservy		T
$v_{c} = v_{c} + at$	_	$E = \frac{\Gamma}{2}$	I = electric current
	a = average acceleration	q	1
$\Delta x = v_i t + \frac{1}{2} a t^2$		W	K = electrostatic
$2 a A x - y^2 - y^2$	V_i = initial velocity	V = - Ed	constant
$2u\Delta x = V_f - V_i$		q	1
	$V_c = $ final velocity		$K = 9 \times 10^{2} \text{ Nm}^{2}$
$\Sigma F = ma$	f and starts	Δq	C ²
	E c	$I = \frac{1}{\Delta t}$	$G = 6.67 \times 10^{-11} \frac{Nm^2}{lm^2}$
W = mg	$\boldsymbol{\Gamma} = \text{force}$	$\Delta \iota$	ку
		V - IR	D
$F_{a} = G \frac{m_{1}m_{2}}{2}$	$\boldsymbol{F}_{f} = \text{force of friction}$	V = IK	I = Power
r^2		T Z 2	a = charge
p = mv	F_N = normal force	$P = VI = I^2 R = \frac{V^2}{V}$	98.
		R	$R_{-resistance}$
$F\Delta t = m\Delta v$	F_{-} - gravitational force		$\mathbf{\Lambda}$ – resistance
	$r_g = \text{gravitational force}$	SERIES CIRCUIT	V_{-} algorithm notantial
F_{f}	<i>a</i>		v – electric potential
$\mu = \frac{f}{r}$	G = Universal Gravitational	$I_T = I_1 = I_2 = I_3 = \dots$	unicicie
\boldsymbol{F}_N	Constant		W - Work
		$V_{\rm T} = V_1 + V_2 + V_3 + \dots$	VV = VVOIK
	p = momentum		Fundamental particle
			electron
	μ = coefficient of incline	$R_T = R_1 + R_2 + R_3 + \dots$	
	1 distance between souther of		$e^{-1} = -1.60 \times 10^{-19} C$
	r = distance between center of	PARALLEL CIRCUITS	21
	masses	$I_T = I_1 + I_2 + I_3 + \dots$	e mass 9.11 x 10 ⁻⁵¹ kg
	W – weight		
	// – weight	$V_T = V_1 = V_2 = V_2 = \dots$	
		1	
		$R_{\pi} = \frac{1}{1}$	
		1 1 1	
		\overline{R} + \overline{R} + \overline{R} + \overline{R} +	
		\mathbf{n}_1 \mathbf{n}_2 \mathbf{n}_3	

<u>ENERGY</u>	$h={ m height}$	MOTION IN 2-D	a_{a} = centripetal acceleration
$W = F\Delta x$	k = spring constant	v^2	C I
$P = \frac{W}{M} = \frac{\Delta E}{M} = Fv$	KE = kinetic energy	$a_c = \frac{1}{r}$	F_c = centripetal force
$\Delta t \Delta t$	PE_{g} = gravitational	v^2	
$PE_g = mgh$	potential	$F_c = m \frac{r}{r}$	au = Torque
$KE = \frac{1}{2}mv^2$	$PE_s = \text{potential energy}$	1 rev = 2 π rad = 360°	
F = -kx	stored in a spring $P = power$	au = r imes F	L = Angular Momentum
$PE_s = \frac{1}{2}kx^2$	W = work x = change in spring length from the	$L = I\omega$	$\omega = angular velocity$
	equilibrium position	$KE = \frac{1}{2} I \omega^2$	

	High School	PHYSICS	FORMUL	AE 2-19-2018
--	-------------	---------	--------	---------------------

HEAT ENERGY	C = specific heat	WAVE PHENOMENA	
$Q = mc\Delta T$ $Q = mL_f$ $Q = mL_V$	L_f = latent heat of fusion L_V = latent heat of vaporization	$T = \frac{1}{f}$ $v = f\lambda$ OR $= v\lambda$	C = speed of light in a vacuum = 3 x 10 ⁸ m/s
$\Delta L = \alpha L_o \Delta T$	vaporization Q = amount of heat ΔT = change in temperature α = coefficient of linear expansion L_o = original length $c_{water} = 4186 \frac{J}{kg^\circ K}$ 1 cal = 4.184 joules	$n = \frac{c}{v}$ $n_i \sin \theta_i = n_r \sin \theta_r$ $\lambda = \frac{xd}{L}$ $n \ \lambda = d \sin \theta$ $\sin \theta_c = \frac{1}{n}$	Speed of sound in air at 0°C = 331 m/s at 20°C 343 m/s d = distance between slits f = v = frequency L = distance from slit to screen n = index of absolute refraction T = period v = speed x = distance from central maximum to first-order maximum λ = wavelength θ = angle θ_c = critical angle
			relative to air

GEOMETRIC OPTICS		ELECTROMAGNETIC	
1 1 1	f = focal length	APPLICATIONS	B = magnetic field strength
$\frac{1}{f} = \frac{1}{d_i} + \frac{1}{d_o}$	d_i = image distance	F = Bqv F = BIL	I_P = current in primary
	d_{o} = object distance	V = BLv	I_{S} = current in secondary
$\frac{h_i}{h_a} = -\frac{d_i}{d_a} = m$	$h_o =$ object size	$\frac{N_P}{N_T} = \frac{V_P}{V_T}$	N_P = number of turns in primary coil
0 0	h_i = image size	V I = V I (ideal)	N_s = number of turns in
	m = magnification	$V_P I_P = V_S I_s$ (ideal)	secondary coil
		$efficiency = \frac{V_S I_S}{V_L I_S}$	V_P = voltage of primary
		$V_P I_P$	V_S = voltage of secondary
			L = length of conductor
			V = electric potential difference