PHYSICS FORMULAE High School Physics 2-19-2018

$\begin{aligned} & \bar{v}=\frac{\overline{\Delta x}}{\Delta t} \\ & \bar{a}=\frac{\Delta v}{\Delta t} \\ & v_{f}=v_{i}+a t \\ & \Delta x=v_{i} t+\frac{1}{2} a t^{2} \\ & 2 a \Delta x=v_{f}^{2}-v_{i}^{2} \end{aligned}$ $\begin{aligned} & \Sigma F=m a \\ & W=m g \\ & F_{g}=G \frac{m_{1} m_{2}}{r^{2}} \\ & p=m v \end{aligned}$ $F \Delta t=m \Delta v$ $\mu=\frac{F_{f}}{F_{N}}$	$\begin{aligned} & \Delta x=\text { displacement } \\ & \text { (change of position) } \\ & \bar{v}=\text { average velocity } \\ & \bar{a}=\text { average acceleration } \\ & v_{i}=\text { initial velocity } \\ & v_{f}=\text { final velocity } \\ & F=\text { force } \\ & F_{f}=\text { force of friction } \\ & F_{N}=\text { normal force } \\ & F_{g}=\text { gravitational force } \\ & G=\text { Universal Gravitational } \\ & \text { Constant } \\ & p=\text { momentum } \\ & \mu=\text { coefficient of friction } \\ & r=\text { distance between center of } \\ & \text { masses } \\ & W=\text { weight } \end{aligned}$	ELECTRICITY AND MAGNETISM $\begin{aligned} & F_{e}=k \frac{q_{1} q_{2}}{r^{2}} \\ & E=\frac{F}{q} \\ & V=\frac{W}{q}=E d \\ & I=\frac{\Delta q}{\Delta t} \\ & V=I R \\ & P=V I=I^{2} R=\frac{V^{2}}{R} \end{aligned}$ SERIES CIRCUIT $\begin{aligned} & I_{T}=I_{1}=I_{2}=I_{3}=\ldots \\ & V_{T}=V_{1}+V_{2}+V_{3}+\ldots \\ & R_{T}=R_{1}+R_{2}+R_{3}+\ldots \end{aligned}$ PARALLEL CIRCUITS $\begin{aligned} & I_{T}=I_{1}+I_{2}+I_{3}+\ldots \\ & V_{T}=V_{1}=V_{2}=V_{3}=\ldots \\ & R_{T}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots} \end{aligned}$	$\left.\left.\begin{array}{l} E=\text { electric field } \\ \text { intensity } \end{array}\right] \begin{array}{l} I=\text { electric current } \\ k=\text { e electrostatic } \\ \text { constant } \end{array}\right] \begin{aligned} & k=\frac{9 \times 10^{9} \mathrm{Nm}^{2}}{\mathrm{C}^{2}} \\ & G=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} \\ & P=\text { Power } \\ & q=\text { charge } \\ & R=\text { resistance } \\ & V=\text { electric potential } \\ & \text { difference } \\ & W=\text { Work } \end{aligned}$ Fundamental particle electron $\mathrm{e}^{-1}=-1.60 \times 10^{-19} \mathrm{C}$ $\text { e mass } 9.11 \times 10^{-31} \mathrm{~kg}$
$\begin{gathered} \frac{\text { ENERGY }}{W=F \Delta x} \\ P=\frac{W}{\Delta t}=\frac{\Delta E}{\Delta t}=F v \\ P E_{g}=m g h \\ K E=\frac{1}{2} m v^{2} \\ F=-k x \\ P E_{s}=\frac{1}{2} k x^{2} \end{gathered}$	$h=$ height $k=$ spring constant $K E=$ kinetic energy $P E_{g}=$ gravitational potential energy $P E_{s}=$ potential energy stored in a spring $P=$ power $W=$ work $x=$ change in spring length from the equilibrium position	$\begin{gathered} \text { MOTION IN 2-D } \\ a_{c}=\frac{v^{2}}{r} \\ F_{c}=m \frac{v^{2}}{r} \\ 1 \mathrm{rev}=2 \pi \mathrm{rad}=360^{\circ} \\ \tau=r \times F \\ \mathrm{~L}=\mathrm{I} \omega \\ \mathrm{KE}=\frac{1}{2} \mathrm{I} \omega^{2} \end{gathered}$	$a_{c}=$ centripetal acceleration $F_{c}=$ centripetal force $\tau=$ Torque L = Angular Momentum I = Moment of Inertia $\omega=$ angular velocity

High School PHYSICS FORMULAE 2-19-2018

$\begin{aligned} & \quad \text { HEAT ENERGY } \\ & Q=m c \Delta T \\ & Q=m L_{f} \\ & Q=m L_{V} \\ & \Delta L=\alpha L_{o} \Delta T \end{aligned}$	$\mathbf{C}=$ specific heat $L_{f}=$ latent heat of fusion $L_{V}=$ latent heat of vaporization $Q=$ amount of heat $\Delta T=$ change in temperature $\alpha=$ coefficient of linear expansion $L_{o}=$ original length $c_{\text {water }}=4186 \frac{\mathrm{~J}}{\mathrm{~kg}^{\circ} \mathrm{K}}$ $1 \mathrm{cal}=4.184$ joules	$\begin{aligned} & \quad \text { WAVE PHENOMENA } \\ & T=\frac{1}{f} \\ & v=f \lambda \text { OR }=v \lambda \\ & n=\frac{c}{v} \\ & n_{i} \sin \theta_{i}=n_{r} \sin \theta_{r} \\ & \lambda=\frac{x d}{L} \\ & n \lambda=\mathrm{d} \sin \theta \\ & \sin \theta_{c}=\frac{1}{n} \end{aligned}$	$C=$ speed of light in a vacuum = $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ Speed of sound in air at $0^{\circ} \mathrm{C}=$ $331 \mathrm{~m} / \mathrm{s}$ at $20^{\circ} \mathrm{C} 343 \mathrm{~m} / \mathrm{s}$ $d=$ distance between slits $f=v=$ frequency $L=$ distance from slit to screen $n=$ index of absolute refraction $T=$ period $V=$ speed $X=$ distance from central maximum to first-order maximum $\lambda=$ wavelength θ = angle $\theta_{c}=$ critical angle relative to air

