New Jersey Science Leaque
 Chemistry II Exam January 2016 (Corrections)

Answer the following questions on the answer sheet provided. Each correct response is worth 4 points. Use the letters in parentheses for your answers. Choose the letter that best completes or answers the item. Be certain that erasures are complete. Please PRINT your name, school area, and which test you are taking on the scantron.

1. Which of the following instrumental techniques is most suitable in determining the concentration of Cr^{6+} ions in aqueous solutions?
A. Visible Spectroscopy
C. Paper Chromatography
B. X-Ray Crystallography
D. Gel Filtration
2. Ammonium ferric sulfate dodecahydrate $\mathrm{NH}_{4} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \bullet 12 \mathrm{H}_{2} \mathrm{O}(\mathrm{MW}=482.2 \mathrm{~g} / \mathrm{mol})$ is synthesized according to the following two-step reactions:

$$
\begin{gathered}
2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})+\mathrm{Fe}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{NO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{SO}_{4}^{2-}(\mathrm{aq})+12 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NH}_{4} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})
\end{gathered}
$$

If a student starts with 1.25 g of $\mathrm{FeSO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}(\mathrm{MW}=278 \mathrm{~g} / \mathrm{mol})$ and obtains 1.00 g of dried product, what is the percent yield in the reaction?
A. 32.4
B. 46.1
C. 53.9
D. 78.0
3. Which of the following 10.0 g samples contains the most C atoms?
A. CaCO_{3}
B. CaC_{2}
C. CO_{2}
D. CH_{4}
4. For which pair of species is the difference in radii the greatest?
A. K^{+}and Br^{-}
B. Ca^{2+} and S^{2-}
C. Na^{+}and F^{-}
D. Li^{+}and I^{-}
5. 100.0 mL of a $0.10 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ aqueous solution is added to 100.0 mL of a 0.30 M NaCl aqueous solution. Which ion has the highest concentration in solution after the chemical reaction is terminated?
A. Pb^{2+}
B. $\mathrm{NO}_{3}{ }^{-}$
C. Na^{+}
D. Cl^{-}
6. $\quad \mathrm{KMnO}_{4}+\ldots \mathrm{Na}_{2} \mathrm{SO}_{3}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow \ldots \mathrm{MnO}_{2}+\ldots \mathrm{Na}_{2} \mathrm{SO}_{4}+\ldots \mathrm{KOH}$

When the above equation is balanced using the smallest whole-number coefficients, the coefficient of $\mathrm{H}_{2} \mathrm{O}$ will be equal to
A. 1
B. 2
C. 3
D. 6
7. When heated, 1.20 g of MO_{3} react stoichiometrically with 0.648 g of Al according to the following equation:

$$
\mathrm{MO}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{~s}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{M}(\mathrm{~s})
$$

What is the identity of the metal? All full credit. Equation not balanced.
A. Mn
B. Mo
C. V
D. Cr
8. 60.0 mL of a 1.00 M HCl solution is added to a beaker containing 5.00 g of a mixture of NaCl and $\mathrm{Na}_{2} \mathrm{CO}_{3}$. All the HCl solution is required to complete the reaction. Then, the beaker is heated to dryness to constant weight. What is the mass composition of NaCl in the mixture?
A. 1.17 g
B. 1.82 g
C. 3.18 g
D. 3.51 g
9. What is the correct systematic name of $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}$?
A. Lead acetate
B. Lead(II) acetate
C. Lead(IV) acetate
D. Plumbous acetate
10. In which of the following compounds does the carbon atoms have the highest oxidation state?
A. CH_{4}
B. $\mathrm{CH}_{4} \mathrm{O}$
C. $\mathrm{CH}_{2} \mathrm{O}$
D. $\mathrm{CH}_{2} \mathrm{O}_{2}$
11. Europium has two stable isotopes. A sample of elemental Eu is found to have 2.83034×10^{23} atoms of Eu-151. If elemental Europium is found to have a mass of 151.96 amu on earth, what is the natural abundance of $\mathrm{Eu}-153$?
A. 48.0%
B. 50.0%
C. 52.0%
D. 54.0%
12. The following figure depicts the two dimensional thin layer chromatography of a sample X .

TLC (Thin Layer

 chromatography) is a technique used to separate a mixture into its constituents based on the different polarities of the compounds present in the mixture. This is done based on the interactions between the polar stationary and less-polar mobile phase. A mixture is placed on the plate at position marked X, then through capillary action solvent A moves up the plate until the point shown (solvent front). The plate is then dried, rotated 90° to the left and the process repeated with solvent B until the point solvent front B is reached. How many compounds were present in the original mixture?
A. 4
B. 5
C. 6
D. 7
13. What is the empirical formula of aspartame, if aspartame is an artificial sweetener that is found to be 57.14% carbon, 6.16% hydrogen, 9.52% nitrogen, and 27.18% oxygen?
A. $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}$
B. $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{2}$
C. $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{2}$
D. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$
14. The two peaks in the mass spectrum shows that there are 2 isotopes of boron - with relative isotopic masses of 10 and 11 on the ${ }^{12} \mathrm{C}$ scale. Average atomic mass of the Boron atoms is 10.8 amu. What is the natural abundance of Boron-10?
A. 20.0
B. 23.0
C. 41.7
D. 81.3

15. Which species can act as an oxidizing agent but NOT as a reducing agent?
A. $\mathrm{NO}_{3}{ }^{-}$
B. Cu^{2+}
C. ClO_{4}^{-}
D. All of these
16. Potassium alum has the formula $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} \bullet x \mathrm{H}_{2} \mathrm{O}$. The molecular weight of $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}$ is $258 \mathrm{~g} / \mathrm{mol}$. The following experimental data are collected:

Mass of the empty crucible and cover:	30.000 g
Mass of the crucible, cover and sample:	32.000 g
Mass of the crucible, cover and sample after first heating:	31.246 g
Mass of the crucible, cover and sample after second heating:	31.090 g
Mass of the crucible, cover and sample after third heating:	31.089 g

Which of the following mathematical expressions will be used to determine the value of x ?
A. $\frac{\left(\frac{1.089}{258}\right)}{\left(\frac{0.911}{18}\right)}$
B. $\frac{\left(\frac{0.911}{18}\right)}{\left(\frac{1.089}{258}\right)}$
C. $\frac{\left(\frac{0.911}{258}\right)}{\left(\frac{0.911}{18}\right)}$
D. $\frac{\left(\frac{1.089}{18}\right)}{\left(\frac{0.911}{258}\right)}$
17. Analysis of a brass sample (sample 1) shows that it contains 5 grams of zinc and 20 grams of copper. Another brass sample (sample 2) contains 10 grams of zinc and 10 grams of copper. How will it be possible to prepare 10 grams of a brass sample containing 30% of zinc using these two brass samples? Assume that there is no loss of mass during the process.
A. Take 7 g of sample 1 and 3 g of sample 2 .
B. Take 3 g of sample 1 and 7 g of sample 2 .
C. Take 5 g of sample 1 and 5 g of sample 2 .
D. Take 6 g of sample 1 and 4 g of sample 2 .
18. Which of the following ions can precipitate the Ba^{2+} ions but not the Mg^{2+} ions from an aqueous solution containing these two cations?
A. Cl^{-}
B. $\mathrm{NO}_{3}{ }^{-}$
C. $\mathrm{CH}_{3} \mathrm{COO}^{-}$
D. $\mathrm{SO}_{4}{ }^{2-}$
19. A mixture of gases of A_{2} and B_{2} was reacted in a closed container.

$$
\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AB}(\mathrm{~g})
$$

The resulting gas mixture had a molar composition as follows: $40 \% \mathrm{~A}_{2}, 20 \% \mathrm{~B}_{2}$ and $40 \% \mathrm{AB}$. What was the molar composition of A_{2} in the initial mixture?
A. 20%
B. 40%
C. 60%
D. 80%
20. The electron configuration of $[\mathrm{Ar}] 3 d^{8} 4 s^{2}$ belongs to
A. Ni^{2+}
B. Ni
C. Ni^{3+}
D. Co
21. Consider the following substitution reaction represented by the equation:

$$
\mathrm{CH}_{4}+4 \mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+4 \mathrm{HCl}
$$

When 32.0 g of CH_{4} react with 71.0 g of Cl_{2}, the maximum amount of HCl produced is (assume no other side reaction occurs)
A. 36.5 g
B. 71.0 g
C. 103 g
D. 308 g
22. Consider the following reactions:

$$
\begin{aligned}
& \mathrm{QCl}_{2}+\mathrm{Z} \rightarrow \text { no reaction } \\
& \mathrm{MCl}_{2}+\mathrm{Q} \rightarrow \mathrm{M}+\mathrm{QCl}_{2} \\
& \mathrm{MCl}_{2}+\mathrm{Z} \rightarrow \mathrm{M}+\mathrm{ZCl}_{2}
\end{aligned}
$$

What is the correct order of increasing activity for the metals M, Q and Z ?
A. $\mathrm{M}<\mathrm{Q}<\mathrm{Z}$
B. $\mathrm{M}<\mathrm{Z}<\mathrm{Q}$
C. $\mathrm{Z}<\mathrm{Q}<\mathrm{M}$
D. $\mathrm{Z}<\mathrm{M}<\mathrm{Q}$
23. Which sublevel is being filled in the Lanthanides series?
A. 3 f
B. 4 f
C. 5 f
D. 4 d
24. Which of the following electron configurations represents an excited state of a Calcium atom?
A. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$
D. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 7 p^{1}$
25. Which of the following equations correctly represents the net ionic reaction between a solution of cadmium nitrate and a solution of sodium sulfide?
A. $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow \mathrm{CdS}(\mathrm{s})$
B. $\mathrm{Cd}^{2+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq}) \rightarrow \mathrm{CdS}(\mathrm{s})$
C. $2 \mathrm{Cd}^{+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq}) \rightarrow \mathrm{Cd}_{2} \mathrm{~S}(\mathrm{~s})$
D. $\mathrm{Cd}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CdSO}_{4}(\mathrm{~s})$

Periodic Table and Chemistry Formulas 1-18-2016

58 Ce 140.1 9.	$\begin{array}{\|c} 59 \\ \mathbf{P r} \\ 140.9 \end{array}$	$\begin{gathered} 60 \\ \mathbf{N d} \\ 144.2 \end{gathered}$	$\begin{array}{\|c\|} \hline 61 \\ \mathrm{Pm}_{(145)} \\ (145) \end{array}$	$\begin{array}{\|c\|} \hline 62 \\ \mathrm{Sm} \\ 150.4 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 63 \\ \mathbf{E u} \\ \hline 152.0 \\ \hline \end{array}$	$\begin{gathered} 64 \\ \mathbf{G d} \\ 157.3 \end{gathered}$	$\begin{gathered} 65 \\ \mathbf{T b} \\ 158.9 \end{gathered}$	$\begin{array}{\|c} 66 \\ \text { Dy } \\ 162.5 \end{array}$	$\begin{array}{\|c\|} \hline 67 \\ \mathbf{H o} \\ 164.9 \\ \hline \end{array}$	$\begin{array}{\|c\|c} \hline 68 \\ \mathbf{E r} \\ \hline 167.3 \\ \hline \end{array}$	$\begin{aligned} & 69 \\ & \mathbf{T m} \\ & \mathbf{T} \mathbf{m} .9 \end{aligned}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.0 \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \hline 71 \\ \mathbf{L u} \\ 175.0 \\ \hline \end{array}$	Lanthanide Series
$\begin{gathered} 90 \\ \mathbf{T h} \\ 232.0 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 91 \\ \mathrm{~Pa} \\ 231.0 \end{array}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.0 \end{gathered}$	$\begin{aligned} & 93 \\ & \mathbf{N p} \\ & (237) \end{aligned}$	$\begin{gathered} 94 \\ \mathrm{Pu} \\ (244) \end{gathered}$	$\begin{array}{\|c} 95 \\ \text { Am } \\ (243) \end{array}$	$\begin{aligned} & 96 \\ & \text { Cm } \\ & (247) \end{aligned}$	$\begin{gathered} 97 \\ \text { Bk } \\ (247) \end{gathered}$	$\begin{aligned} & 98 \\ & \text { Cf } \\ & (251) \end{aligned}$	$\begin{array}{\|c} \hline 99 \\ \text { Es } \\ (252) \end{array}$	$\begin{aligned} & 100 \\ & \text { Fm } \\ & (257) \end{aligned}$	$\begin{array}{\|l\|} \hline 101 \\ \mathbf{M d} \\ (258) \\ \hline \end{array}$	$\begin{aligned} & 102 \\ & \text { No } \\ & (259) \end{aligned}$	$\begin{aligned} & 103 \\ & \mathbf{L r} \\ & (262) \end{aligned}$	Actinide Series

CHEMISTRY FORMULAS

GASES, LIQUIDS, SOLUTIONS $\mathrm{PV}=\mathrm{nRT}$	$\mathrm{d}=\mathrm{m}$	$\mathrm{P}=$ pressure	R, Gas constant $=8.31$ Joules
	V	$\mathrm{V}=$ volume	Mole Kelvin
		$\mathrm{T}=$ Temperature	$=0.0821$ liter atm
	$\sqrt{\frac{3 k t}{m}}=\sqrt{\frac{3 R T}{M}}$	T = Temperature	mole Kelvin
$\frac{\left(P+n^{2} a\right)(V-n b)}{V^{2}}=n R T$	(${ }^{m}=\sqrt{M}$	$\mathrm{d}=\text { density }$	$=8.31$ volts coulombs
		$\mathrm{m}=$ mass	mole Kelvin
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {total }} \bullet \mathrm{X}_{\mathrm{A}}$	$\mathrm{KE}_{\text {per molecule }}=\frac{\mathrm{mv}^{2}}{2}$	$\mathrm{v}=$ velocity	Boltzmann's constant,
		where $\mathrm{X}_{\mathrm{A}}=\underline{\text { moles } \mathrm{A}}$	$\mathrm{k}=1.38 \times 10^{-23}$ Joule
$\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+$	$\mathrm{KE}_{\text {per mole }}=\underline{3 R T}$	total moles	K
	Ker mole $\frac{}{}$		$\mathrm{K}_{\text {f water }}=1.86 \mathrm{Kelvin} / \mathrm{molal}$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}$		$\mathrm{u}_{\text {rms }}=$ root-mean-square-root	$\mathrm{K}_{\text {bwater }}=0.512 \mathrm{Kelvin} / \mathrm{molal}$
		KE = Kinetic energy	
	$\frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}$	r = rate of effusion	STP $=0.00{ }^{\circ} \mathrm{C}, 1.00 \mathrm{~atm}(101.3 \mathrm{kPa})$
Kelvin $={ }^{\circ} \mathrm{C}+273$	$\frac{r_{2}}{}=\sqrt{M_{1}}$	$\mathrm{M}=$ Molar mass	$=14.7 \mathrm{psi}$
		$\pi=$ osmotic pressure	
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$	M , molarity = moles solute	$\mathrm{i}=$ van't Hoff factor	1 faraday $\mathfrak{I}=96,500$ coulombs/ mole of
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$	liter of solution	$\mathrm{K}_{\mathrm{f}}=$ molal freezing point constant	${ }^{\circ} \mathrm{C} \times 9 / 5+32={ }^{\circ} \mathrm{F}$
	molality = moles of solute	$\mathrm{K}_{\mathrm{b}}=$ molal boiling point	$\left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9={ }^{\circ} \mathrm{C}$
$\underline{\underline{P}}_{1} \underline{1}_{1} \mathrm{~V}_{1}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \underline{\mathrm{~V}}_{2}$	molarity kg of solvent	$\mathrm{K}_{\mathrm{b}}=\underset{\text { constant }}{\text { molal boiling point }}$	(\%-32) F - $/ 9={ }^{\circ} \mathrm{C}$
	$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \bullet$ molality	$\mathrm{Q}=$ reaction quotient	
		$\mathrm{I}=$ current in amperes	
	$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \bullet$ molality	$\mathrm{q}=$ charge in coulombs	
		$\mathrm{t}=$ time	
		$\mathrm{E}^{\mathrm{o}}=$ standard reduction	
	$\pi=\underline{\mathrm{nRTi}}$	potential	
	V	Keq $=$ equilibrium constant	

ATOMIC STRUCTURE $\Delta \mathrm{E}=\mathrm{h} v$ $\mathrm{c}=\vee \lambda$ $\lambda=\underline{h}$ m v $\mathrm{p}=\mathrm{m} \mathrm{v}$ $\mathrm{E}_{\mathrm{n}}=\frac{-2.178 \times 10^{-18}}{\mathrm{n}^{2}} \text { joule }$ E = energy $v=$ frequency $\lambda=$ wavelength $\mathrm{p}=$ momentum $\mathrm{v}=$ velocity $\mathrm{n}=$ principal quantum number $\mathrm{c}=$ speed of light $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ $\mathrm{h}=$ Planck's constant $=6.63 \times 10^{-34}$ Joule s $\mathrm{k}=$ Boltzmann constant $=1.38 \times 10^{-23}$ joule $/ \mathrm{K}$ Avogadro's number $=6.02 \times 10^{23}$ molecules/mole $\mathrm{e}=$ electron charge $=-1.602 \times 10^{-19}$ coulomb 1 electron volt/atom $=96.5 \times 10^{23} \mathrm{kj} / \mathrm{mole}$	OXIDATION-REDUCTION ELECTROCHEMISTRY $\begin{gathered} \mathrm{Q}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{[}[\mathrm{B}]^{\mathrm{b}}} \\ \text { where a B }+\mathrm{bB} \Leftrightarrow \mathrm{c} \mathrm{C}+\mathrm{dD} \\ \mathrm{I}=\mathrm{q} / \mathrm{t} \quad \mathrm{I}=\text { amperes, } \mathrm{q}=\text { charge in coulombs, } \\ \mathrm{t}=\text { time in seconds. } \\ \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{\mathrm{RT} \ln \mathrm{Q}}{\mathrm{nI}}=\mathrm{E}^{\mathrm{o}}{ }_{\text {cell }}-\frac{0.0592 \log \mathrm{Q} @ 25^{\circ} \mathrm{C}}{\mathrm{n}} \\ \log \mathrm{~K}=\frac{\mathrm{nE}^{\mathrm{o}}}{0.0592} \end{gathered}$ 1 Faraday $\mathfrak{I}=96,500$ coulombs $/$ mole
EQUILIBIRUM TERMS $\mathrm{K}_{\mathrm{a}}=$ weak acid K_{b} = weak base $\mathrm{K}_{\mathrm{w}}=$ water $\mathrm{K}_{\mathrm{p}}=$ gas pressure $\mathrm{K}_{\mathrm{c}}=$ molar concentration	KINETICS EQUATIONS $A_{o}-A=k t \mathrm{~A}_{0}$ is initial concentration, amount. $\begin{gathered} \ln \frac{A_{o}}{A}=k t \\ \frac{1}{A}-\frac{1}{A_{o}}=k t \\ \ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T}-\frac{1}{T_{1}}\right) \end{gathered}$

THERMOCHEMISTRY $\Delta S^{0}=\sum \Delta S^{0}$ products $-\sum \Delta S^{0}$ reactants $\Delta \mathrm{H}^{0}=\Sigma \Delta \mathrm{H}^{0}$ products $-\Sigma \Delta \mathrm{H}^{0}$ reactants $\Delta \mathrm{G}^{0}=\Sigma \Delta \mathrm{G}^{0}$ products $-\Sigma \Delta \mathrm{G}^{0}$ reactants $\begin{gathered} \Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{~S}^{0} \\ \Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{RT} \ln \mathrm{~K}=-2.303 \mathrm{RT} \log \mathrm{~K} \end{gathered}$		Metal Activity Series					
						Metal	Metal Ion
						Lithium	Li^{+1}
						Potassium	K^{+1}
						Calcium	Ca^{+2}
					$\mathrm{C}_{\mathrm{p}}=$ molar heat capacity at constant pressure	Sodium	Na^{+1}
$\begin{gathered} \Delta \mathrm{G}^{0}=-\mathrm{nJ} \mathrm{E}^{0} \\ \Delta \mathrm{G}=\Delta \mathrm{G}^{0}+\mathrm{RT} \ln \mathrm{Q}=\Delta \mathrm{G}^{0}+2.303 \mathrm{RT} \log \mathrm{Q} \end{gathered}$					1 faraday $\mathfrak{I}=96,500$	Magnesium	Mg^{+2}
					coulombs/mole	Aluminum	Al^{+3}
					$\mathrm{C}_{\text {water }}=4.18$ joule	Manganese	Mn^{+2}
$\mathrm{q}=\mathrm{mC} \Delta \mathrm{T}$					${ }_{\text {water }} \frac{4}{\text { g K }}$	Zinc	Zn^{+2}
$\begin{aligned} \mathrm{C}_{\mathrm{p}} & =\frac{\Delta \mathrm{H}}{\Delta \mathrm{~T}} \\ \mathrm{q} & =\mathrm{mH}_{\mathrm{f}} \\ \mathrm{q} & =\mathrm{mH}_{\mathrm{v}} . \end{aligned}$					Water $\mathrm{H}_{\mathrm{f}}=\frac{330 \text { joules }}{\text { gram }}$	Chromium	$\mathrm{Cr}^{+2}, \mathrm{Cr}^{+3}$
					Water $\mathrm{H}_{\mathrm{v}}=\underline{2260 \text { joules }}$	Iron	$\mathrm{Fe}^{+2}, \mathrm{Fe}^{+3}$
					gram	Lead	$\mathrm{Pb}^{+2}, \mathrm{~Pb}^{+4}$
						Copper	$\mathrm{Cu}^{+1}, \mathrm{Cu}^{+2}$
						Mercury	Hg^{+2}
						Silver	Ag^{+1}
						Platinum	Pt^{+2}
						Gold	$\mathrm{Au}^{+1}, \mathrm{Au}^{+3}$

Chemistry II January 2016 Answer Key Yellow test
 Date: Thursday January 14, 2016 (Yellow corrected)

1. A	6. A	11. A	16. B	21. A
2. B	7. D(all full credit)	12. C	17. A	22. B
3. D	8. B	13. D	18. D	23. B
4. D	9. C	14. A	19. C	24. D
5. C	10. D	15. D	20. B	25. B

CHEMISTRY 11 For all second year and AP level students. 25 multiple choice questions per exam. JANUARY: matter and measurement, atomic theory (sub-atomic particles, atomic masses), spectroscopy (Beer's Law) chemical formulas, chemical equations (precipitation reactions, ionic equations, solubility, acid-base reactions, gas forming reactions, oxidation reduction reactions, balancing redox reactions by oxidation state method, activity series, mole relationships, massmass problems, stoichiometry of redox solutions, solutions stoichiometry, electronic structure and periodic table/periodicity. FEBRUARY: chemical bonding, photon-electron spectroscopy, doping and semiconductors, given molecular orbital diagram determine bond order, paramagnetism, and diamagnetism, electronegativity, Lewis structures, molecular geometry, polarity of molecules, hybridization($s p, \mathrm{sp}^{2}, \mathrm{sp}^{3}$), liquids, solids, vapor pressure, intermolecular forces, thermo chemistry (enthalpy, Hess's Law, heats of formation, bond energies, calorimetry), phase changes, gases, plus January topics.
MARCH: non-metals, metals(not unit cells), solutions, rates of reactions, reaction mechanisms, descriptive chemistry of the elements, plus Jan and Feb topics.
APRIL: chemical equilibrium, acids, bases, and salts, $K_{a}, K_{b}, K_{s p}$, buffers, redox, voltaic cells, $\Delta S, \Delta H, \Delta G$, descriptive chemistry of the elements, plus Jan, Feb., and Mar topics.

Testing Dates for 2016

Thursday, January 14, 2016
Thursday, March 10, 2016
New Jersey Science League
PO Box 65 Stewartsville, NJ 08886-0065
Phone \#: 908-213-8923 Fax \#: 908-213-9391 email: newjsl@ptd.net
Web address: entnet.com/~personal/njscil/html
PLEASE RETURN THE AREA RECORD SHEET AND ALL REGULAR TEAM MEMBER
SCANTRONS (ALL STUDENTS PLACING $1^{\text {ST, }} 2^{\mathrm{ND}}, 3^{\mathrm{RD}}, 4^{\mathrm{TH}}$).
If you return scantrons of the Alternates, then label them as ALTERNATES. Dates for 2017 Season
Thursday, January 12, 2017
Thursday, March 9, 2017

Thursday, February 9, 2017
Thursday, April 13, 2017

New Jersey Science League Chemistry II Exam CANARY COLOR
 February 11, 2016 (No Corrections)

Answer the following questions on the answer sheet provided. Each correct response is worth 4 points. Use the letters in parentheses for your answers. Choose the letter that best completes or answers the item. Be certain that erasures are complete. Please PRINT your name, school area code, and which test you are taking on the scantron.

1. The density of a pure CH_{4} sample confined in a rigid container is $1.60 \mathrm{~g} / \mathrm{L}$ at $-73.0^{\circ} \mathrm{C}$. What would be the temperature in ${ }^{\circ} \mathrm{C}$ in the container, if the pressure is changed to 3.28 atm?
A. $27.0^{\circ} \mathrm{C}$
B. $73.0^{\circ} \mathrm{C}$
C. $127^{\circ} \mathrm{C}$
D. $227^{\circ} \mathrm{C}$
2. Suppose that the number of atoms in hydrocarbons (compounds containing C and H only) other than hydrogen is n. If the number of valence electrons in the compound is equal to $6 n+2$, then only
\qquad bonds exist in the molecule.
A. Single
B. Double
C. Triple
D. Quaternary
3. For the following reactions, the given enthalpy changes are expressed per mole of product formed.

$$
\begin{array}{ll}
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta H=-285.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta H=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) & \Delta H=-238.7 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

Determine the heat of combustion of methanol?
A. $-567.1 \mathrm{~kJ} / \mathrm{mol}$
B. $-725.8 \mathrm{~kJ} / \mathrm{mol}$
C. $-1134.2 \mathrm{~kJ} / \mathrm{mol}$
D. $-1452.8 \mathrm{~kJ} / \mathrm{mol}$
4. Solid carbon dioxide is known as dry ice. It sublimes at $-80.0^{\circ} \mathrm{C}$. The following data are given:
$\Delta H^{\circ}{ }_{\text {sublimation }}=25.0 \mathrm{~kJ} / \mathrm{mol}$
Specific heat of solid $\mathrm{CO}_{2}=54.6 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$
Specific heat of CO_{2} gas $=37.0 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$ (assume independent of temperature between the temperatures of $-80.0^{\circ} \mathrm{C}$ and $25.0^{\circ} \mathrm{C}$)
How much heat energy is required to bring 18.0 grams of solid CO_{2} from $-90.0^{\circ} \mathrm{C}$ to $25.0^{\circ} \mathrm{C}$?
A. $1.20 \times 10^{4} \mathrm{~J}$
B. $2.40 \times 10^{4} \mathrm{~J}$
C. $3.77 \times 10^{4} \mathrm{~J}$
D. $5.45 \times 10^{4} \mathrm{~J}$
5. A quantity of 100.0 mL of 1.000 M HBr is mixed with 100.0 mL of $0.500 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ in a coffee-cup calorimeter that has a heat capacity of $20.0 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. The initial temperature of the HBr and $\mathrm{Ca}(\mathrm{OH})_{2}$ solutions is the same at $23.5^{\circ} \mathrm{C}$. For the following process the heat of neutralization is $-56.0 \mathrm{~kJ} / \mathrm{mol}$. (Assume that the specific heat of the final solution is $4.20 \mathrm{~J} / \mathrm{g} \bullet \mathrm{K}$)

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

What is the final temperature in ${ }^{\circ} \mathrm{C}$ of the mixed solution?
A. 18.0
B. 24.0
C. 30.0
D. 33.0
6. In the photoelectron spectrum below which peak(s) represent the 1 s orbital electrons?

A. 1
B. 2 and 3
C. 4
D. 5
7. Two gases, X and Y, are simultaneously introduced from the opposite ends into a 100-cm glass tube. If the two gases meet at about 40-cm from the end where the gas Y is introduced these two possible gases, X and Y, respectively, are

	Gas \mathbf{X}	Gas \mathbf{y}
A.	CH_{4}	CO
B.	CO	CO_{2}
C.	CH_{4}	SO_{2}
D.	CO	SO_{2}

VAPOR PRESSURE CHART • normal boiling point

8. Based on the vapor pressure chart, which of the following substances has the weakest intermolecular forces in their liquid state?
A. methyl chloride
B. 2-heptene
C. ether
D. butane

9. Each solution below is added to $10.0 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution. Which solution will give the largest mass of precipitate in grams?
A. $10.0 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{MW}=174 \mathrm{~g} / \mathrm{mol})$
B. $10.0 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{KBr}(\mathrm{MW}=119 \mathrm{~g} / \mathrm{mol})$
C. $10.0 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{KCl}(\mathrm{MW}=74.5 \mathrm{~g} / \mathrm{mol})$
D. 10.0 mL 0.10 M KI (MW = $166 \mathrm{~g} / \mathrm{mol})$
10. Which of the following molecular compounds has a no net dipole moment?
A. NH_{3}
B. $\mathrm{H}_{2} \mathrm{~S}$
C. SO_{3}
D. $\mathrm{CH}_{3} \mathrm{~F}$
11. In which of the following compounds is the carbon-nitrogen bond the shortest?
A. $\mathrm{CH}_{3} \mathrm{CN}$
B. $\mathrm{CH}_{3} \mathrm{NH}_{2}$
C. $\mathrm{H}_{2} \mathrm{CNH}$
D. all have same length
12. Which is the correct order when the elements K, Ca, and Si , are arranged in order of increasing first ionization energy?
A. K, Ca, and Si
B. K, Si, and Ca
C. Si, Ca, and K
D. Ca, K, and Si
13. A rigid vessel of volume 0.50 L containing Ar at a pressure of 10.0 atm is connected to a second rigid vessel of volume 0.75 L containing Ne at a pressure of 5.00 atm at the same temperature. A valve separating these two vessels is opened. What is the final pressure in the vessels assuming that the temperature remains constant?
A. 5.0 atm
B. 6.0 atm
C. 7.0 atm
D. 7.5 atm
14. Which of the following species is square planar?
A. $\mathrm{SO}_{4}{ }^{2-}$
B. XeF_{4}
C. $\mathrm{CO}_{3}{ }^{2-}$
D. $\mathrm{NH}_{4}{ }^{+}$
15. Which of the following species has no lone pairs of electrons on their central atoms?
A. $I_{3}{ }^{-}$
B. $\mathrm{CO}_{3}{ }^{2-}$
C. ClO^{-}
D. $\mathrm{H}_{3} \mathrm{O}^{+}$
16. Suppose you have a balloon of given volume, V_{1}, containing a gas at temperature, T_{1}. When you place the balloon in a hotter room at temperature, T_{2}, the balloon's temperature starts to increase at constant pressure. What are the signs of the system's q, w, and ΔE for this process?
A. $-q,+w,-\Delta E$
B. $+q,+w,-\Delta E$
C. $-q,-w,+\Delta E$
D. $+q,-w,+\Delta E$
17. A gas mixture is known to be a mixture of CH_{4} (methane) and O_{2}. A bulb having a capacity of $250-\mathrm{mL}$ is filled with the gas to a pressure of 3.00 atm at $27.0^{\circ} \mathrm{C}$. If the weight of the gas in the bulb is 0.676 g . what is the mole fraction of methane in the gas mixture?
A. 0.385
B. 0.614
C. 0.0385
D. 0.0614
18. The enthalpy of formation, $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$, equals zero at $25^{\circ} \mathrm{C}$ for which of the following in their standard states?
A. Gases
C. compounds
B. solids
D. elements
19. Which statement is correct about the critical point of a phase diagram?
A. Solid, liquid and gas are present at equilibrium.
B. Liquid can be produced by a change in pressure
C. Vapor can be produced by a change in temperature
D. Liquid and vapor are indistinguishable from one another
20. In the diagram below the paired open spheres represent H_{2} molecules, while the dark spheres represent N_{2} molecules. When the molecules react to form the maximum possible amount of ammonia, NH_{3} molecules, what is the limiting reactant and how many molecules of NH_{3} can be formed?
A. N_{2} is the limiting reactant, while $5 \mathrm{NH}_{3}$ molecules are formed.
B. N_{2} is the limiting reactant, $10 \mathrm{NH}_{3}$ molecules are formed
C. H_{2} is the limiting reactant, 8 molecules of NH_{3} are formed
D. H_{2} is the limiting reactant, 12 molecules of NH_{3} are formed.

21. In which of the following pairs is the radius of the first species bigger than the second one?
A. Lu ${ }^{3+}, \mathrm{Lu}$
B. $\mathrm{Li}^{+}, \mathrm{Li}$
C. $\mathrm{Ca}, \mathrm{Ca}^{2+}$
D. $\mathrm{Li}^{+}, \mathrm{Ca}^{2+}$
22. A rigid 1-L container contains He gas at $27^{\circ} \mathrm{C}$. An equal mass of Ne at the same temperature is then introduced to the vessel. The temperature remains constant. What is the value of the new pressure, P_{2} ?
A. $\mathrm{P}_{2}=\mathrm{P}_{1}$
B. $P_{2}=\frac{6}{5} \times P_{1}$
C. $\mathrm{P}_{2}=\frac{5}{6} \times \mathrm{P}_{1}$
D. $P_{2}=2 \times P_{1}$
23. In which of the following reactions are oxygen atoms oxidized and reduced at the same time?
A. $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
B. $\quad 2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
C. $2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{2}$
D. $\mathrm{KCl}+3 \mathrm{KClO}_{4} \rightarrow 4 \mathrm{KClO}_{3}$
24. Arrange $\mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{PH}_{3}$, and $\mathrm{H}_{2} \mathrm{O}$ in order from lowest to highest boiling points?
A. $\mathrm{NH}_{3}, \mathrm{PH}_{3}, \mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{PH}_{3}, \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{CH}_{4}, \mathrm{PH}_{3}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{PH}_{3}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}$
25. For which of the following transitions would a hydrogen atom absorb a photon with the longest wavelength?
A. $n=5$ to $n=6$
B. $n=4$ to $n=3$
C. $n=1$ to $n=2$
D. $n=7$ to $n=2$

Periodic Table and Chemistry Formulas 1-18-2016

58 Ce 140.1 9.	$\begin{array}{\|c} 59 \\ \mathbf{P r} \\ 140.9 \end{array}$	$\begin{gathered} 60 \\ \mathbf{N d} \\ 144.2 \end{gathered}$	$\begin{array}{\|c\|} \hline 61 \\ \mathrm{Pm}_{(145)} \\ (145) \end{array}$	$\begin{array}{\|c\|} \hline 62 \\ \mathrm{Sm} \\ 150.4 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 63 \\ \mathbf{E u} \\ \hline 152.0 \\ \hline \end{array}$	$\begin{gathered} 64 \\ \mathbf{G d} \\ 157.3 \end{gathered}$	$\begin{gathered} 65 \\ \mathbf{T b} \\ 158.9 \end{gathered}$	$\begin{array}{\|c} 66 \\ \text { Dy } \\ 162.5 \end{array}$	$\begin{array}{\|c\|} \hline 67 \\ \mathbf{H o} \\ 164.9 \\ \hline \end{array}$	$\begin{array}{\|c\|c} \hline 68 \\ \mathbf{E r} \\ \hline 167.3 \\ \hline \end{array}$	$\begin{aligned} & 69 \\ & \mathbf{T m} \\ & \mathbf{T} \mathbf{m} .9 \end{aligned}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.0 \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \hline 71 \\ \mathbf{L u} \\ 175.0 \\ \hline \end{array}$	Lanthanide Series
$\begin{gathered} 90 \\ \mathbf{T h} \\ 232.0 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 91 \\ \mathrm{~Pa} \\ 231.0 \end{array}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.0 \end{gathered}$	$\begin{aligned} & 93 \\ & \mathbf{N p} \\ & (237) \end{aligned}$	$\begin{gathered} 94 \\ \mathrm{Pu} \\ (244) \end{gathered}$	$\begin{array}{\|c} 95 \\ \text { Am } \\ (243) \end{array}$	$\begin{aligned} & 96 \\ & \text { Cm } \\ & (247) \end{aligned}$	$\begin{gathered} 97 \\ \text { Bk } \\ (247) \end{gathered}$	$\begin{aligned} & 98 \\ & \text { Cf } \\ & (251) \end{aligned}$	$\begin{array}{\|c} \hline 99 \\ \text { Es } \\ (252) \end{array}$	$\begin{aligned} & 100 \\ & \text { Fm } \\ & (257) \end{aligned}$	$\begin{array}{\|l\|} \hline 101 \\ \mathbf{M d} \\ (258) \\ \hline \end{array}$	$\begin{aligned} & 102 \\ & \text { No } \\ & (259) \end{aligned}$	$\begin{aligned} & 103 \\ & \mathbf{L r} \\ & (262) \end{aligned}$	Actinide Series

CHEMISTRY FORMULAS

GASES, LIQUIDS, SOLUTIONS $\mathrm{PV}=\mathrm{nRT}$	$\mathrm{d}=\mathrm{m}$	$\mathrm{P}=$ pressure	R, Gas constant $=8.31$ Joules
	V	$\mathrm{V}=$ volume	Mole Kelvin
		$\mathrm{T}=$ Temperature	$=0.0821$ liter atm
	$\sqrt{\frac{3 k t}{m}}=\sqrt{\frac{3 R T}{M}}$	T = Temperature	mole Kelvin
$\frac{\left(P+n^{2} a\right)(V-n b)}{V^{2}}=n R T$	(${ }^{m}=\sqrt{M}$	$\mathrm{d}=\text { density }$	$=8.31$ volts coulombs
		$\mathrm{m}=$ mass	mole Kelvin
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {total }} \bullet \mathrm{X}_{\mathrm{A}}$	$\mathrm{KE}_{\text {per molecule }}=\frac{\mathrm{mv}^{2}}{2}$	$\mathrm{v}=$ velocity	Boltzmann's constant,
		where $\mathrm{X}_{\mathrm{A}}=\underline{\text { moles } \mathrm{A}}$	$\mathrm{k}=1.38 \times 10^{-23}$ Joule
$\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+$	$\mathrm{KE}_{\text {per mole }}=\underline{3 R T}$	total moles	K
	Ker mole $\frac{}{}$		$\mathrm{K}_{\text {f water }}=1.86 \mathrm{Kelvin} / \mathrm{molal}$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}$		$\mathrm{u}_{\text {rms }}=$ root-mean-square-root	$\mathrm{K}_{\text {bwater }}=0.512 \mathrm{Kelvin} / \mathrm{molal}$
		KE = Kinetic energy	
	$\frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}$	r = rate of effusion	STP $=0.00{ }^{\circ} \mathrm{C}, 1.00 \mathrm{~atm}(101.3 \mathrm{kPa})$
Kelvin $={ }^{\circ} \mathrm{C}+273$	$\frac{r_{2}}{}=\sqrt{M_{1}}$	$\mathrm{M}=$ Molar mass	$=14.7 \mathrm{psi}$
		$\pi=$ osmotic pressure	
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$	M , molarity = moles solute	$\mathrm{i}=$ van't Hoff factor	1 faraday $\mathfrak{I}=96,500$ coulombs/ mole of
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$	liter of solution	$\mathrm{K}_{\mathrm{f}}=$ molal freezing point constant	${ }^{\circ} \mathrm{C} \times 9 / 5+32={ }^{\circ} \mathrm{F}$
	molality = moles of solute	$\mathrm{K}_{\mathrm{b}}=$ molal boiling point	$\left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9={ }^{\circ} \mathrm{C}$
$\underline{\underline{P}}_{1} \underline{1}_{1} \mathrm{~V}_{1}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \underline{\mathrm{~V}}_{2}$	molarity kg of solvent	$\mathrm{K}_{\mathrm{b}}=\underset{\text { constant }}{\text { molal boiling point }}$	(\%-32) F - $/ 9={ }^{\circ} \mathrm{C}$
	$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \bullet$ molality	$\mathrm{Q}=$ reaction quotient	
		$\mathrm{I}=$ current in amperes	
	$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \bullet$ molality	$\mathrm{q}=$ charge in coulombs	
		$\mathrm{t}=$ time	
		$\mathrm{E}^{\mathrm{o}}=$ standard reduction	
	$\pi=\underline{\mathrm{nRTi}}$	potential	
	V	Keq $=$ equilibrium constant	

ATOMIC STRUCTURE $\Delta \mathrm{E}=\mathrm{h} v$ $\mathrm{c}=\vee \lambda$ $\lambda=\underline{h}$ m v $\mathrm{p}=\mathrm{m} \mathrm{v}$ $\mathrm{E}_{\mathrm{n}}=\frac{-2.178 \times 10^{-18}}{\mathrm{n}^{2}} \text { joule }$ E = energy $v=$ frequency $\lambda=$ wavelength $\mathrm{p}=$ momentum $\mathrm{v}=$ velocity $\mathrm{n}=$ principal quantum number $\mathrm{c}=$ speed of light $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ $\mathrm{h}=$ Planck's constant $=6.63 \times 10^{-34}$ Joule s $\mathrm{k}=$ Boltzmann constant $=1.38 \times 10^{-23}$ joule $/ \mathrm{K}$ Avogadro's number $=6.02 \times 10^{23}$ molecules/mole $\mathrm{e}=$ electron charge $=-1.602 \times 10^{-19}$ coulomb 1 electron volt/atom $=96.5 \times 10^{23} \mathrm{kj} / \mathrm{mole}$	OXIDATION-REDUCTION ELECTROCHEMISTRY $\begin{gathered} \mathrm{Q}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{[}[\mathrm{B}]^{\mathrm{b}}} \\ \text { where a B }+\mathrm{bB} \Leftrightarrow \mathrm{c} \mathrm{C}+\mathrm{dD} \\ \mathrm{I}=\mathrm{q} / \mathrm{t} \quad \mathrm{I}=\text { amperes, } \mathrm{q}=\text { charge in coulombs, } \\ \mathrm{t}=\text { time in seconds. } \\ \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{\mathrm{RT} \ln \mathrm{Q}}{\mathrm{nI}}=\mathrm{E}^{\mathrm{o}}{ }_{\text {cell }}-\frac{0.0592 \log \mathrm{Q} @ 25^{\circ} \mathrm{C}}{\mathrm{n}} \\ \log \mathrm{~K}=\frac{\mathrm{nE}^{\mathrm{o}}}{0.0592} \end{gathered}$ 1 Faraday $\mathfrak{I}=96,500$ coulombs $/$ mole
EQUILIBIRUM TERMS $\mathrm{K}_{\mathrm{a}}=$ weak acid K_{b} = weak base $\mathrm{K}_{\mathrm{w}}=$ water $\mathrm{K}_{\mathrm{p}}=$ gas pressure $\mathrm{K}_{\mathrm{c}}=$ molar concentration	KINETICS EQUATIONS $A_{o}-A=k t \mathrm{~A}_{0}$ is initial concentration, amount. $\begin{gathered} \ln \frac{A_{o}}{A}=k t \\ \frac{1}{A}-\frac{1}{A_{o}}=k t \\ \ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T}-\frac{1}{T_{1}}\right) \end{gathered}$

THERMOCHEMISTRY $\Delta S^{0}=\sum \Delta S^{0}$ products $-\sum \Delta S^{0}$ reactants $\Delta \mathrm{H}^{0}=\Sigma \Delta \mathrm{H}^{0}$ products $-\Sigma \Delta \mathrm{H}^{0}$ reactants $\Delta \mathrm{G}^{0}=\Sigma \Delta \mathrm{G}^{0}$ products $-\Sigma \Delta \mathrm{G}^{0}$ reactants $\begin{gathered} \Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{~S}^{0} \\ \Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{RT} \ln \mathrm{~K}=-2.303 \mathrm{RT} \log \mathrm{~K} \end{gathered}$		Metal Activity Series					
						Metal	Metal Ion
						Lithium	Li^{+1}
						Potassium	K^{+1}
						Calcium	Ca^{+2}
					$\mathrm{C}_{\mathrm{p}}=$ molar heat capacity at constant pressure	Sodium	Na^{+1}
$\begin{gathered} \Delta \mathrm{G}^{0}=-\mathrm{nJ} \mathrm{E}^{0} \\ \Delta \mathrm{G}=\Delta \mathrm{G}^{0}+\mathrm{RT} \ln \mathrm{Q}=\Delta \mathrm{G}^{0}+2.303 \mathrm{RT} \log \mathrm{Q} \end{gathered}$					1 faraday $\mathfrak{I}=96,500$	Magnesium	Mg^{+2}
					coulombs/mole	Aluminum	Al^{+3}
					$\mathrm{C}_{\text {water }}=4.18$ joule	Manganese	Mn^{+2}
$\mathrm{q}=\mathrm{mC} \Delta \mathrm{T}$					${ }_{\text {water }} \frac{4}{\text { g K }}$	Zinc	Zn^{+2}
$\begin{aligned} \mathrm{C}_{\mathrm{p}} & =\frac{\Delta \mathrm{H}}{\Delta \mathrm{~T}} \\ \mathrm{q} & =\mathrm{mH}_{\mathrm{f}} \\ \mathrm{q} & =\mathrm{mH}_{\mathrm{v}} . \end{aligned}$					Water $\mathrm{H}_{\mathrm{f}}=\frac{330 \text { joules }}{\text { gram }}$	Chromium	$\mathrm{Cr}^{+2}, \mathrm{Cr}^{+3}$
					Water $\mathrm{H}_{\mathrm{v}}=\underline{2260 \text { joules }}$	Iron	$\mathrm{Fe}^{+2}, \mathrm{Fe}^{+3}$
					gram	Lead	$\mathrm{Pb}^{+2}, \mathrm{~Pb}^{+4}$
						Copper	$\mathrm{Cu}^{+1}, \mathrm{Cu}^{+2}$
						Mercury	Hg^{+2}
						Silver	Ag^{+1}
						Platinum	Pt^{+2}
						Gold	$\mathrm{Au}^{+1}, \mathrm{Au}^{+3}$

Chemistry II Answer Key CANARY TEST Date: Thursday February 11, 2016 (No Corrections)

1. C	6. A	11. A	16. D	21. C
2. A	7. D	12. A	17. B	22. B
3. B	8. A	13. C	18. D	23. C
4. A	9. A	14. B	19. D	24. C
5. C	10. C	15. B	20. C	25. A

CHEMISTRY 11 For all second year and AP level students. 25 multiple choice questions per exam.
JANUARY: matter and measurement, atomic theory (sub-atomic particles, atomic masses), spectroscopy (Beer's Law) chemical formulas, chemical equations (precipitation reactions, ionic equations, solubility, acid-base reactions, gas forming reactions, oxidation reduction reactions, balancing redox reactions by oxidation state method, activity series, mole relationships, massmass problems, stoichiometry of redox solutions, solutions stoichiometry, electronic structure and periodic table/periodicity. FEBRUARY: chemical bonding, photon-electron spectroscopy, doping and semiconductors, given molecular orbital diagram determine bond order, paramagnetism, and diamagnetism, electronegativity, Lewis structures, molecular geometry, polarity of molecules, hybridization(sp, $\mathrm{sp}^{2}, \mathrm{sp}^{3}$), liquids, solids, vapor pressure, intermolecular forces, thermo chemistry (enthalpy, Hess's Law, heats of formation, bond energies, calorimetry), phase changes, gases, plus January topics.
MARCH: non-metals, metals(not unit cells), solutions, rates of reactions, reaction mechanisms, descriptive chemistry of the elements, plus Jan and Feb topics.
APRIL: chemical equilibrium, acids, bases, and salts, $K_{a}, K_{b}, K_{s p}$, buffers, redox, voltaic cells, $\Delta S, \Delta H, \Delta G$, descriptive chemistry of the elements, plus Jan, Feb., and Mar topics.

Testing Dates for 2016
Thursday, February 11, 2016
Thursday, March 10, 2016 Thursday, April 14, 2016*
*All areas and schools must complete the April exam and mail in the results by April 28th, 2016.
New Jersey Science League
PO Box 65 Stewartsville, NJ 08886-0065
Phone \#: 908-213-8923 Fax \#: 908-213-9391 email: newjsl@ptd.net
Web address: entnet.com/~personal/njscil/html
PLEASE RETURN THE AREA RECORD SHEET AND ALL REGULAR TEAM MEMBER SCANTRONS
(ALL STUDENTS PLACING $1^{\text {ST }}, 2^{\mathrm{ND}}, 3^{\mathrm{RD}}, 4^{\mathrm{TH}}$).
If you return scantrons of the Alternates, then label them as ALTERNATES.
Dates for 2017 Season

Thursday, January 12, 2017
Thursday, March 9, 2017

Thursday, February 9, 2017
Thursday, April 13, 2017

New Jersey Science League Canary Exam

Chemistry II Exam March 10, 2016 (Corrections)

Answer the following questions on the answer sheet provided. Each correct response is worth 4 points. Use the letters in parentheses for your answers. Choose the letter that best completes or answers the item. Be certain that erasures are complete. Please PRINT your name, school area code, and which test you are taking on the scantron.
QUESTIONS 1 and 2 are related.

1. When 100.0 g of water at $85.0^{\circ} \mathrm{C}$ is added to 100.0 g of water at $25.0^{\circ} \mathrm{C}$ in a coffee cup calorimeter the maximum registered temperature is $54.0^{\circ} \mathrm{C}$. The specific heat of water is $4.18 \mathrm{~J} / \mathrm{g}$. ${ }^{\circ} \mathrm{C}$. What is the calorimetric constant of the Styrofoam cup?
A. $28.8 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
B. $12.2 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
C. $14.3 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
D. $36.9 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
2. The very same calorimeter is used to determine the heat of reaction between calcium chloride and sodium carbonate. When 500.0 mL 0.10 M calcium chloride at $25.0^{\circ} \mathrm{C}$ is added to 500.0 mL 0.10 M sodium sulfate solution at $25.0^{\circ} \mathrm{C}$. The temperature of the mixture in the calorimeter rises to $28.0^{\circ} \mathrm{C}$. Determine the heat of reaction in $\mathrm{kJ} / \mathrm{mol}$, assuming that the specific heat of the mixture is $4.18 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$, the density of the mixture is $1.0 \mathrm{~g} / \mathrm{mL}$, and the volumes are additive. All full credit Two different chemicals in statement of the problem.
A. 25.3
B. 253
C. -25.3
D. -253
3. Methane $\left(\mathrm{CH}_{4}\right)$, propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ and butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ are all used as fuels.

$$
\begin{array}{ll}
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-890 \mathrm{~kJ} \\
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-2044 \mathrm{~kJ} \\
\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-2260 \mathrm{~kJ}
\end{array}
$$

Which fuel provides more energy per gram?
A. methane
B. propane
C. butane
D. All provide the same heat energy per gram of fuel.
4. What does the figure to the right represent?
A. The crystal structure of NaCl .
B. An alloy of copper and zinc.
C. A master alloy of copper and boron.
D. The atoms of crystalline gold.

5. The rate of decomposition of C is $0.024 \mathrm{~mol} / \mathrm{L} \times \mathrm{s}$. What is the rate of decomposition of A ?

$$
2 \mathrm{~A}(g)+\mathrm{C}(g) \rightarrow 3 \mathrm{~B}(g)
$$

A. $0.048 \mathrm{~mol} / \mathrm{L} \times \mathrm{s}$
B. $0.018 \mathrm{~mol} / \mathrm{L} \times \mathrm{s}$
C. $0.024 \mathrm{~mol} / \mathrm{L} \times \mathrm{s}$
D. $0.012 \mathrm{~mol} / \mathrm{L} \times \mathrm{s}$
6. A compound decomposes by a second-order process. If 25.0% of the compound decomposes in 33.3 minutes, the half-life of the compound is \qquad -.
A. 66 minutes
B. 12 minutes
C. 50 minutes
D. 100 minutes
7. The reaction $\mathrm{A} \rightarrow \mathrm{B}$ is first order in [A]. Consider the following data. What is the half-life of this reaction in seconds?

Time (s)	$[\mathrm{A}] \mathrm{mM}$
0	160
10	40
20	10

A. 1.0
B. 10.0
C. 5.0
D. 4.0
8. Below is a graph of potential energy vs reaction coordinate. Based on the graph, which statement is correct?
A. The first step is the rate determining step.
B. C is the catalyst.
C. The overall reaction is endothermic.
D. There are four steps in this reaction?

9. Which of the following will NOT result in the formation of a gaseous product?
A. Addition of acetic acid to sodium C. Heating zinc sulfate heptahydrate in a bicarbonate.
crucible.
B. Addition of dry sodium hydride into water.
D. Copper metal is added to hydrochloric acid.
10. What volume of 0.0250 M lead(II) nitrate solution is needed to precipitate all the iodide ions present in 25.0 mL of 0.0250 M calcium iodide solution?
A. 25.0 mL
B. 50.0 mL
C. 12.5 mL
D. $100 . \mathrm{mL}$
11. A group of students is trying to determine the concentration of $[\operatorname{Fe}(\mathrm{SCN})]^{2+}(\mathrm{aq})$ in the following reaction:

$$
\begin{aligned}
& \mathrm{Fe}^{3+}(\mathrm{aq})+\underset{\text { colorless }}{\mathrm{SCN}^{-}(\mathrm{aq})} \rightarrow \underset{\text { yellow }}{[\mathrm{Fe}(\mathrm{SCN})]^{2+}}(\mathrm{aq}) \\
& \text { red }
\end{aligned}
$$

The iron(III) nitrate solution is prepared in 0.10 M nitric acid solution in order to keep the iron ion in its $3+$ oxidation state. This solution has a yellow color. The complex formed between the two reactants has a red color. Which experimental procedure will introduce the largest error?
A. Zeroing the spectrophotometer using distilled water.
B. Setting the wavelength to 675 nm .
C. Not cleaning the outside of cuvettes before putting them into the spectrophotometer.
D. Using 0.10 M KSCN instead of 0.10 M NaSCN .
12. Which element exhibits the greatest number of oxidation states in its compounds?
A. Cl
B. Ba
C. Cu
D. Pb
13. Lithium copper hydride $\mathrm{Li}_{\mathrm{n}} \mathrm{CuH}_{(\mathrm{n}+1)}$ is an important reducing agent in chemistry. A student synthesizes the compound and wants to find the formula of the compound. The newly synthesized compound is purified and reacts with excess HCl according to the following equation:

$$
\mathrm{Li}_{\mathrm{n}} \mathrm{CuH}_{(\mathrm{n}+1)}+(2 \mathrm{n}+1) \mathrm{HCl} \rightarrow \mathrm{nLiCl}+\mathrm{CuCl}_{2}+\frac{(3 n+2)}{2} \mathrm{H}_{2}
$$

If 1.00 g of this compound releases 772 mL of H_{2} gas at STP, what is the formula of the compound? $\mathrm{Li}=7 ; \mathrm{Cu}=63.5 ; \mathrm{H}=1$.
A. $\mathrm{Li}_{2} \mathrm{CuH}_{3}$
B. LiCuH_{2}
C. $\mathrm{Li}_{4} \mathrm{CuH}_{5}$
D. $\mathrm{Li}_{3} \mathrm{CuH}_{4}$
14. Which of the following is correct if $\mathrm{NaCl}, \mathrm{KCl}, \mathrm{MgO}$, and CaO are arranged in order of increasing lattice energy?
A. $\mathrm{NaCl}<\mathrm{KCl}<\mathrm{MgO}<\mathrm{CaO}$
B. $\mathrm{CaO}<\mathrm{MgO}<\mathrm{KCl}<\mathrm{NaCl}$
C. $\mathrm{KCl}<\mathrm{NaCl}<\mathrm{CaO}<\mathrm{MgO}$
D. $\mathrm{KCl}<\mathrm{NaCl}<\mathrm{MgO}<\mathrm{CaO}$
15. The complete combustion of 5.2 mg of a hydrocarbon, a compound containing C and H only, gave 17.6 mg of CO_{2} and 3.6 mg of $\mathrm{H}_{2} \mathrm{O}$. What is the molecular formula of this hydrocarbon?
A. $\mathrm{C}_{6} \mathrm{H}_{6}$
B. $\mathrm{C}_{6} \mathrm{H}_{10}$
C. $\mathrm{C}_{6} \mathrm{H}_{12}$
D. $\mathrm{C}_{6} \mathrm{H}_{14}$
16. What is the hybridization of the central atom in triiodide ion, $\mathrm{I}_{3}{ }^{-}$? All full credit d sublevels not part chem. II.
A. $s p^{2}$
B. $s p^{3}$
C. $s p^{3} d$
D. $s p^{3} d^{2}$
17. Which of the following is FALSE regarding enthalpy?
A. Enthalpy is a state function.
B. Enthalpy change of the catalyzed reaction is lower than that of the uncatalyzed reaction.
C. The enthalpy change of the reverse reaction is equal to the enthalpy change of the forward reaction. Only the sign will be reversed.
D. The sign of the magnitude of enthalpy change of an exothermic reaction is negative.
18. Which substance has the strongest forces of attraction between its molecules?
A. CCl_{4}
B. CO_{2}
C. N_{2}
D. Xe
19. Which of the following statements is NOT correct regarding the Photoelectric Effect?
A. It was first discovered by Hertz and the experimental data are explained by Einstein.
B. The kinetic energy of the photoelectrons is increased by the increased frequency of the light used to emit the electrons.
C. The kinetic energy of the photoelectrons is increased by the increased intensity of the light used in the experiment.
D. It proves the corpuscular nature of the light.
20. Which gas has the same density at $600^{\circ} \mathrm{C}$ and 2.04 atm as that of N_{2} gas at STP?
A. SO_{2}
B. O_{2}
C. CO
D. CO_{2}
21. When elements with electron configuration $1 s^{2} 2 s^{2} 2 p^{3}$ and $1 s^{2} 2 s^{2} 2 p^{5}$ combine, they form a(n) _ compound.
A. Ionic
B. Covalent
C. Metallic
D. Network covalent
22. A student finds that an unknown hydrate sample is colorless and contains 51.2% crystal water by mass. Based on the data which hydrate does the student have?
A. $\mathrm{BaCl}_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{ZnSO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{MgSO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}$
23. Which of the following pure substances exhibit the strongest hydrogen bonding in the liquid state?
A. CH_{4}
B. $\mathrm{CH}_{3} \mathrm{OH}$
C. $\mathrm{CH}_{3} \mathrm{Br}$
D. HCHO
24. A sample of 1.47 g of MX_{2} (M is the metal, X is the halogen) is dissolved in enough water and titrated with an excess of AgNO_{3} solution. The yellow precipitate is washed and dried, and weighs 2.35 g . Which metal halide is the unknown substance?
A. CaI_{2}
B. CuBr_{2}
C. PbF_{2}
D. SrCl_{2}
25. The electrical conductance of a $\mathrm{Ba}(\mathrm{OH})_{2}$ solution is measured as per the addition of a dilute solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Which of the following graphs best depicts this observation?

Periodic Table and Chemistry Formulas 1-18-2016

58 Ce 140.1 9.	$\begin{array}{\|c} 59 \\ \mathbf{P r} \\ 140.9 \end{array}$	$\begin{gathered} 60 \\ \mathbf{N d} \\ 144.2 \end{gathered}$	$\begin{array}{\|c\|} \hline 61 \\ \mathrm{Pm}_{(145)} \\ (145) \end{array}$	$\begin{array}{\|c\|} \hline 62 \\ \mathrm{Sm} \\ 150.4 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 63 \\ \mathbf{E u} \\ \hline 152.0 \\ \hline \end{array}$	$\begin{gathered} 64 \\ \mathbf{G d} \\ 157.3 \end{gathered}$	$\begin{gathered} 65 \\ \mathbf{T b} \\ 158.9 \end{gathered}$	$\begin{array}{\|c} 66 \\ \text { Dy } \\ 162.5 \end{array}$	$\begin{array}{\|c\|} \hline 67 \\ \mathbf{H o} \\ 164.9 \\ \hline \end{array}$	$\begin{array}{\|c\|c} \hline 68 \\ \mathbf{E r} \\ \hline 167.3 \\ \hline \end{array}$	$\begin{aligned} & 69 \\ & \mathbf{T m} \\ & \mathbf{T} \mathbf{m} .9 \end{aligned}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.0 \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \hline 71 \\ \mathbf{L u} \\ 175.0 \\ \hline \end{array}$	Lanthanide Series
$\begin{gathered} 90 \\ \mathbf{T h} \\ 232.0 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 91 \\ \mathrm{~Pa} \\ 231.0 \end{array}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.0 \end{gathered}$	$\begin{aligned} & 93 \\ & \mathbf{N p} \\ & (237) \end{aligned}$	$\begin{gathered} 94 \\ \mathrm{Pu} \\ (244) \end{gathered}$	$\begin{array}{\|c} 95 \\ \text { Am } \\ (243) \end{array}$	$\begin{aligned} & 96 \\ & \text { Cm } \\ & (247) \end{aligned}$	$\begin{gathered} 97 \\ \text { Bk } \\ (247) \end{gathered}$	$\begin{aligned} & 98 \\ & \text { Cf } \\ & (251) \end{aligned}$	$\begin{array}{\|c} \hline 99 \\ \text { Es } \\ (252) \end{array}$	$\begin{aligned} & 100 \\ & \text { Fm } \\ & (257) \end{aligned}$	$\begin{array}{\|l\|} \hline 101 \\ \mathbf{M d} \\ (258) \\ \hline \end{array}$	$\begin{aligned} & 102 \\ & \text { No } \\ & (259) \end{aligned}$	$\begin{aligned} & 103 \\ & \mathbf{L r} \\ & (262) \end{aligned}$	Actinide Series

CHEMISTRY FORMULAS

GASES, LIQUIDS, SOLUTIONS $\mathrm{PV}=\mathrm{nRT}$	$\mathrm{d}=\mathrm{m}$	$\mathrm{P}=$ pressure	R, Gas constant $=8.31$ Joules
	V	$\mathrm{V}=$ volume	Mole Kelvin
		$\mathrm{T}=$ Temperature	$=0.0821$ liter atm
	$\sqrt{\frac{3 k t}{m}}=\sqrt{\frac{3 R T}{M}}$	T = Temperature	mole Kelvin
$\frac{\left(P+n^{2} a\right)(V-n b)}{V^{2}}=n R T$	(${ }^{m}=\sqrt{M}$	$\mathrm{d}=\text { density }$	$=8.31$ volts coulombs
		$\mathrm{m}=$ mass	mole Kelvin
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {total }} \bullet \mathrm{X}_{\mathrm{A}}$	$\mathrm{KE}_{\text {per molecule }}=\frac{\mathrm{mv}^{2}}{2}$	$\mathrm{v}=$ velocity	Boltzmann's constant,
		where $\mathrm{X}_{\mathrm{A}}=\underline{\text { moles } \mathrm{A}}$	$\mathrm{k}=1.38 \times 10^{-23}$ Joule
$\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+$	$\mathrm{KE}_{\text {per mole }}=\underline{3 R T}$	total moles	K
	Ker mole $\frac{}{}$		$\mathrm{K}_{\text {f water }}=1.86 \mathrm{Kelvin} / \mathrm{molal}$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}$		$\mathrm{u}_{\text {rms }}=$ root-mean-square-root	$\mathrm{K}_{\text {bwater }}=0.512 \mathrm{Kelvin} / \mathrm{molal}$
		KE = Kinetic energy	
	$\frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}$	r = rate of effusion	STP $=0.00{ }^{\circ} \mathrm{C}, 1.00 \mathrm{~atm}(101.3 \mathrm{kPa})$
Kelvin $={ }^{\circ} \mathrm{C}+273$	$\frac{r_{2}}{}=\sqrt{M_{1}}$	$\mathrm{M}=$ Molar mass	$=14.7 \mathrm{psi}$
		$\pi=$ osmotic pressure	
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$	M , molarity = moles solute	$\mathrm{i}=$ van't Hoff factor	1 faraday $\mathfrak{I}=96,500$ coulombs/ mole of
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$	liter of solution	$\mathrm{K}_{\mathrm{f}}=$ molal freezing point constant	${ }^{\circ} \mathrm{C} \times 9 / 5+32={ }^{\circ} \mathrm{F}$
	molality = moles of solute	$\mathrm{K}_{\mathrm{b}}=$ molal boiling point	$\left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9={ }^{\circ} \mathrm{C}$
$\underline{\underline{P}}_{1} \underline{1}_{1} \mathrm{~V}_{1}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \underline{\mathrm{~V}}_{2}$	molarity kg of solvent	$\mathrm{K}_{\mathrm{b}}=\underset{\text { constant }}{\text { molal boiling point }}$	(\%-32) F - $/ 9={ }^{\circ} \mathrm{C}$
	$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \bullet$ molality	$\mathrm{Q}=$ reaction quotient	
		$\mathrm{I}=$ current in amperes	
	$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \bullet$ molality	$\mathrm{q}=$ charge in coulombs	
		$\mathrm{t}=$ time	
		$\mathrm{E}^{\mathrm{o}}=$ standard reduction	
	$\pi=\underline{\mathrm{nRTi}}$	potential	
	V	Keq $=$ equilibrium constant	

ATOMIC STRUCTURE $\Delta \mathrm{E}=\mathrm{h} v$ $\mathrm{c}=\vee \lambda$ $\lambda=\underline{h}$ m v $\mathrm{p}=\mathrm{m} \mathrm{v}$ $\mathrm{E}_{\mathrm{n}}=\frac{-2.178 \times 10^{-18}}{\mathrm{n}^{2}} \text { joule }$ E = energy $v=$ frequency $\lambda=$ wavelength $\mathrm{p}=$ momentum $\mathrm{v}=$ velocity $\mathrm{n}=$ principal quantum number $\mathrm{c}=$ speed of light $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ $\mathrm{h}=$ Planck's constant $=6.63 \times 10^{-34}$ Joule s $\mathrm{k}=$ Boltzmann constant $=1.38 \times 10^{-23}$ joule $/ \mathrm{K}$ Avogadro's number $=6.02 \times 10^{23}$ molecules/mole $\mathrm{e}=$ electron charge $=-1.602 \times 10^{-19}$ coulomb 1 electron volt/atom $=96.5 \times 10^{23} \mathrm{kj} / \mathrm{mole}$	OXIDATION-REDUCTION ELECTROCHEMISTRY $\begin{gathered} \mathrm{Q}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{[}[\mathrm{B}]^{\mathrm{b}}} \\ \text { where a B }+\mathrm{bB} \Leftrightarrow \mathrm{c} \mathrm{C}+\mathrm{dD} \\ \mathrm{I}=\mathrm{q} / \mathrm{t} \quad \mathrm{I}=\text { amperes, } \mathrm{q}=\text { charge in coulombs, } \\ \mathrm{t}=\text { time in seconds. } \\ \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{\mathrm{RT} \ln \mathrm{Q}}{\mathrm{nI}}=\mathrm{E}^{\mathrm{o}}{ }_{\text {cell }}-\frac{0.0592 \log \mathrm{Q} @ 25^{\circ} \mathrm{C}}{\mathrm{n}} \\ \log \mathrm{~K}=\frac{\mathrm{nE}^{\mathrm{o}}}{0.0592} \end{gathered}$ 1 Faraday $\mathfrak{I}=96,500$ coulombs $/$ mole
EQUILIBIRUM TERMS $\mathrm{K}_{\mathrm{a}}=$ weak acid K_{b} = weak base $\mathrm{K}_{\mathrm{w}}=$ water $\mathrm{K}_{\mathrm{p}}=$ gas pressure $\mathrm{K}_{\mathrm{c}}=$ molar concentration	KINETICS EQUATIONS $A_{o}-A=k t \mathrm{~A}_{0}$ is initial concentration, amount. $\begin{gathered} \ln \frac{A_{o}}{A}=k t \\ \frac{1}{A}-\frac{1}{A_{o}}=k t \\ \ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T}-\frac{1}{T_{1}}\right) \end{gathered}$

THERMOCHEMISTRY $\Delta S^{0}=\sum \Delta S^{0}$ products $-\sum \Delta S^{0}$ reactants $\Delta \mathrm{H}^{0}=\Sigma \Delta \mathrm{H}^{0}$ products $-\Sigma \Delta \mathrm{H}^{0}$ reactants $\Delta \mathrm{G}^{0}=\Sigma \Delta \mathrm{G}^{0}$ products $-\Sigma \Delta \mathrm{G}^{0}$ reactants $\begin{gathered} \Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{~S}^{0} \\ \Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{RT} \ln \mathrm{~K}=-2.303 \mathrm{RT} \log \mathrm{~K} \end{gathered}$		Metal Activity Series					
						Metal	Metal Ion
						Lithium	Li^{+1}
						Potassium	K^{+1}
						Calcium	Ca^{+2}
					$\mathrm{C}_{\mathrm{p}}=$ molar heat capacity at constant pressure	Sodium	Na^{+1}
$\begin{gathered} \Delta \mathrm{G}^{0}=-\mathrm{nJ} \mathrm{E}^{0} \\ \Delta \mathrm{G}=\Delta \mathrm{G}^{0}+\mathrm{RT} \ln \mathrm{Q}=\Delta \mathrm{G}^{0}+2.303 \mathrm{RT} \log \mathrm{Q} \end{gathered}$					1 faraday $\mathfrak{I}=96,500$	Magnesium	Mg^{+2}
					coulombs/mole	Aluminum	Al^{+3}
					$\mathrm{C}_{\text {water }}=4.18$ joule	Manganese	Mn^{+2}
$\mathrm{q}=\mathrm{mC} \Delta \mathrm{T}$					${ }_{\text {water }} \frac{4}{\text { g K }}$	Zinc	Zn^{+2}
$\begin{aligned} \mathrm{C}_{\mathrm{p}} & =\frac{\Delta \mathrm{H}}{\Delta \mathrm{~T}} \\ \mathrm{q} & =\mathrm{mH}_{\mathrm{f}} \\ \mathrm{q} & =\mathrm{mH}_{\mathrm{v}} . \end{aligned}$					Water $\mathrm{H}_{\mathrm{f}}=\frac{330 \text { joules }}{\text { gram }}$	Chromium	$\mathrm{Cr}^{+2}, \mathrm{Cr}^{+3}$
					Water $\mathrm{H}_{\mathrm{v}}=\underline{2260 \text { joules }}$	Iron	$\mathrm{Fe}^{+2}, \mathrm{Fe}^{+3}$
					gram	Lead	$\mathrm{Pb}^{+2}, \mathrm{~Pb}^{+4}$
						Copper	$\mathrm{Cu}^{+1}, \mathrm{Cu}^{+2}$
						Mercury	Hg^{+2}
						Silver	Ag^{+1}
						Platinum	Pt^{+2}
						Gold	$\mathrm{Au}^{+1}, \mathrm{Au}^{+3}$

Chemistry II January 2016 Answer Key Canary Exam Date: Thursday March 10, 2016 Record on the area record the \% correct (Corrections)

1. A	6.D	11. B	16. C All full credit	21. B
2. D All full credit	7. C	12. A	17. B	22.D
3. A	8. A	13.B	18. A	23.B
4. C	9.D	14. C	19.C	24.A
5. A	10.A	15. A	20.D	25.D

CHEMISTRY 11 For all second year and AP level students. 25 multiple choice questions per exam. JANUARY: matter and measurement, atomic theory (sub-atomic particles, atomic masses), spectroscopy (Beer's Law) chemical formulas, chemical equations (precipitation reactions, ionic equations, solubility, acid-base reactions, gas forming reactions, oxidation reduction reactions, balancing redox reactions by oxidation state method, activity series, mole relationships, massmass problems, stoichiometry of redox solutions, solutions stoichiometry, electronic structure and periodic table/periodicity. FEBRUARY: chemical bonding, photon-electron spectroscopy, doping and semiconductors, given molecular orbital diagram determine bond order, paramagnetism, and diamagnetism, electronegativity, Lewis structures, molecular geometry, polarity of molecules, hybridization($s p, \mathrm{sp}^{2}$, sp^{3}), liquids, solids, vapor pressure, intermolecular forces, thermo chemistry (enthalpy, Hess's Law, heats of formation, bond energies, calorimetry), phase changes, gases, plus January topics.
MARCH: non-metals, metals(not unit cells), solutions, rates of reactions, reaction mechanisms, descriptive chemistry of the elements, plus Jan and Feb topics.
APRIL: chemical equilibrium, acids, bases, and salts, $K_{a}, K_{b}, K_{s p}$, buffers, redox, voltaic cells, $\Delta S, \Delta H, \Delta G$, descriptive chemistry of the elements, plus Jan, Feb., and Mar topics.

Testing Dates for 2016

Thursday, March 10, 2016
Thursday, April 14, 2016*
*All areas and schools must complete the April exam and mail in the results by April 28th, 2016.
New Jersey Science League
PO Box 65 Stewartsville, NJ 08886-0065
Phone \#: 908-213-8923 Fax \#: 908-213-9391 email: newjsl@ptd.net Web address: entnet.com/~personal/njscil/html
PLEASE RETURN THE AREA RECORD SHEET AND ALL REGULAR TEAM MEMBER
SCANTRONS (ALL STUDENTS PLACING $1^{5 T}, 2^{\mathrm{ND}}, 3^{\mathrm{RD}}, 4^{\mathrm{TH}}$).
If you return scantrons of the Alternates, then label them as ALTERNATES.
Dates for 2017 Season

Thursday, January 12, 2017
Thursday, March 9, 2017

Thursday, February 9, 2017
Thursday, April 13, 2017

New Jersey Science League Chemistry II Exam April 2016 Canary Exam (Corrections)

Answer the following questions on the answer sheet provided. Each correct response is worth 4 points. Use the letters for your answers. Choose the letter that best completes or answers the item. Be certain that erasures are complete. Please PRINT your name, school area code, and which test you are taking on the scantron.
1.

$$
\begin{gathered}
{\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(a q)+4 \mathrm{Cl}^{-}(a q)} \\
\text { Red } \\
\\
\\
\\
\\
\\
\text { Blue }
\end{gathered}
$$

$\mathrm{Co}(\mathrm{II})$ ion $\left(\mathrm{Co}^{2+}\right)$ reacts with concentrated HCl solution to form a blue complex with the formula $\left[\mathrm{CoCl}_{4}\right]^{2-}$. The net ionic equation is given above. This reaction is exothermic as written. A student studying this equilibrium begins with an equilibrium mixture that has a red color. Which of the following statements is NOT correct? Correction. The reaction as written is endothermic. All full credit.
A. When the solution is diluted it will turn light red.
B. When the solution is cooled in an ice bath it will turn blue.
C. When a solution of AgNO_{3} is added to this solution, a precipitate will be observed and the solution will turn red.
D. When a solution of concentrated HCl solution is added dropwise to this solution the solution will turn red.
2. Which of the following solutions will form a buffer upon mixing?
A. $10 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{HCl}+10 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{NaCl}$
B. $10 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{HCl}+10 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{NaOH}$
C. $10 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{HF}+10 \mathrm{ml} 0.10 \mathrm{M} \mathrm{NaF}$
D. $10 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+15.0 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{NaOH}$
3. A solution of KMnO_{4} is standardized against pure sodium oxalate. 0.250 g of sodium oxalate is dissolved in water and then strongly acidified using $4.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution. The solution is then heated to $80^{\circ} \mathrm{C}$. The titration required 27.65 mL of KMnO_{4} solution according to the following reaction:

$$
5 \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{Na}_{2} \mathrm{SO}_{4}+10 \mathrm{CO}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}+8 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{MnSO}_{4}
$$

This permanganate solution is used to determine the concentration of an unknown commercial peroxide solution. The volume of permanganate required to titrate 10.0 mL of peroxide solution is 15.90 mL .

$$
5 \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{MnSO}_{4}+5 \mathrm{O}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}+8 \mathrm{H}_{2} \mathrm{O}
$$

What is the molar concentration of the peroxide solution?
A. 0.107 M
B. 0.536 M
C. 0.321 M
D. 0.0987 M
4. A weak monoprotic acid, HA, is titrated with a strong base, NaOH .25 .0 mL of the weak monoprotic acid is titrated with 0.0334 M NaOH solution. What is the percent ionization of the weak acid in aqueous solution? Ans is 1.56 \% all full credit.
A. 0.250%
B. 2.50%
C. 3.34%
D. 5.00%
5. 25.0 mL of 0.10 M HCl solution is added to a 50.0 mL NaOH solution. The final pH of the solution is 12.00 . What is the molarity of the NaOH solution?
A. 0.23 M
B. 0.12 M
C. 0.065 M
D. 0.075 M
6. A 75.0 mL 2.0 M HCl solution is added to a coffee cup calorimeter containing 50.0 mL of 2.0 M NaOH solution at $23.0^{\circ} \mathrm{C}$. The temperature is increased to $33.7^{\circ} \mathrm{C}$. Determine the molar heat of neutralization. Assume that the volumes are additive. The calorimetric constant of the coffee cup calorimeter is negligible. Specific heat of the mixture is $4.18 \mathrm{~J} / \mathrm{g} \times{ }^{\circ} \mathrm{C}$.
A. $48 \mathrm{~kJ} / \mathrm{mol}$
B. $56 \mathrm{~kJ} / \mathrm{mol}$
C. $-48 \mathrm{~kJ} / \mathrm{mol}$
D. $-56 \mathrm{~kJ} / \mathrm{mol}$
7. Which of the following reactions is NOT a redox reaction?
A. $\quad 2 \mathrm{CuCl}_{2}+4 \mathrm{NaI} \rightarrow 2 \mathrm{CuI}+\mathrm{I}_{2}+4 \mathrm{NaCl}$
B. $\mathrm{CuCl}_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SOCl}_{2} \rightarrow \mathrm{CuCl}_{2}+2 \mathrm{SO}_{2}+4 \mathrm{HCl}$
C. $\mathrm{CuSO}_{4}+\mathrm{Zn} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{Cu}$
D. $\mathrm{Cu}+\mathrm{Cl}_{2} \rightarrow \mathrm{CuCl}_{2}$
8. Which of the following ions will be the most strongly hydrated?
A. H^{+}
B. Cs^{+}
C. $\mathrm{CH}_{3}{ }^{+}$
D. I^{-}
9. Which of the following interactions between the two species is NOT given correctly?

Species Type of interactions
A. $\mathrm{CH}_{3} \mathrm{OH}$ and CHCl_{3}
dipole-dipole
B. Na^{+}and $\mathrm{H}_{2} \mathrm{O}$
ion-dipole
C. $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}$
hydrogen bonding
D. Cl^{-}and $\mathrm{C}_{5} \mathrm{H}_{12}$
dispersion forces
10. When the following redox reaction is balanced (using smallest-whole-number coefficients) what is the coefficient of $\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$?

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow \mathrm{Cr}^{3+}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}
$$

A. 3
B. 6
C. 5
D. 10
11. Which of the 0.010 M aqueous solutions has the lowest pH ?
A. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
B. $K_{2} S$
C. LiF
D. $\mathrm{NH}_{4} \mathrm{Cl}$
12. The solubility product constant of BaF_{2} is 1.5×10^{-6} at $25^{\circ} \mathrm{C}$. Which of the following will increase the solubility of BaF_{2} at $25^{\circ} \mathrm{C}$?
A. add $0.1 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
B. add $0.1 \mathrm{M} \mathrm{HNO}_{3}$
C. add 0.1 M NaF
D. none of these
13. Strontium- 90 has a half-life of 28 years. How long will it take for a sample of 20.0 mg of $\mathrm{Sr}-90$ to disintegrate to 6.25 mg ? Radioactive decay follows $\mathbf{1}^{\text {st }}$ order decay kinetics.
A. 4.44 y
B. 18.9 y
C. 47.9 y
D. 76.3 y
14. The standard reduction potentials are given below:

$$
\begin{array}{ll}
\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag} & E^{\circ}=+0.80 \mathrm{~V} \\
\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+} & E^{\circ}=+0.77 \mathrm{~V} \\
\mathrm{Cr}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr} & E^{\circ}=-0.41 \mathrm{~V}
\end{array}
$$

Which of the following ionic species is the strongest oxidizing agent?
A. Cr^{2+}
B. Ag^{+}
C. Fe^{3+}
D. Fe^{2+}
15. A mixture of NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is dissolved in water and titrated with 1.0 M HCl solution. The titration is terminated when the phenolphthalein turned from pink to colorless. In this step $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is converted to NaHCO_{3}. The titration continued with a second indicator to titrate the NaHCO_{3}. Which indicator is used for the second titration?

Choice	Indicator	pH range
A.	Thymolphthalein	$9.5-10.5$
B.	Alizarin yellow	$10.0-12.0$
C.	Crystal violet	$0.0-2.0$
D.	Bromocresol Green	$3.8-5.4$

16. Which of the following compounds has ionic bonds only?
A. $\mathrm{NH}_{4} \mathrm{Cl}$
B. $\mathrm{CH}_{3} \mathrm{~F}$
C. NaH
D. AlCl_{3}
17. What is the bond angle in the formaldehyde molecule, $\mathrm{H}_{2} \mathrm{CO}$?
A. 180°
B. 120°
C. 109°
D. 90°
18. Which of the following species has the same shape as SeF_{4} according to VSPER Theory?
A. SiF_{4}
B. $\mathrm{NH}_{4}{ }^{+}$
C. BF_{4}^{-}
D. none of these
19. In which of the following species the central atom has an empty p-orbital?
A. $\mathrm{CH}_{3}{ }^{+}$
B. $\mathrm{NO}_{3}{ }^{-}$
C. $\mathrm{N}_{3}{ }^{-}$
D. $\mathrm{CO}_{2}{ }^{2-}$
20. The following standard reduction potentials are given:
A.

B.

D.

In which containers will there be a color change of the solution and the formation of a precipitate?
21. 1.80 g of sugar, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 50.01 g of water. The freezing point of the solution is $-0.37^{\circ} \mathrm{C}$. The formula used to calculate the molecular weight (MW) of the sugar is

$$
\mathrm{MW}=\frac{m \times K_{f}}{k g \text { solvent } \times \Delta T}
$$

where
$m=$ mass of the solute (g)
$\Delta T=$ freezing point depression $\left({ }^{\circ} \mathrm{C}\right)$ which is the difference between the freezing point of water $\left(\mathrm{T}_{\mathrm{i}}\right)$ and the mixture of sugar and water $\left(\mathrm{T}_{\mathrm{f}}\right) . \Delta T=T_{f}-T_{i}$.
kg solvent $=$ mass of the solvent (kg)
$K_{f}=$ freezing point depression constant $\left(-1.86^{\circ} \mathrm{C} / \mathrm{molal}\right)$
Which of following measurements will lead to the largest experimental error in determining the molecular weight of the sugar?
A. Weighing the mass of the sugar with a centigram balance ($\pm 0.01 \mathrm{~g}$).
B. Measuring the temperature difference with an alcohol thermometer $\left(\pm 0.1^{\circ} \mathrm{C}\right)$.
C. Weighing the solvent with a centigram balance ($\pm 0.01 \mathrm{~g}$).
D. Using deionized water instead of distilled water.
22. When $30.00 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{CaCl}_{2}$ solution and $40.00 \mathrm{~mL} 0.20 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$ solutions are mixed what will be the maximum amount of solid produced?
A. 0.31 g
B. 0.62 g
C. 0.58 g
D. 0.47 g
23. What is the geometry of the perchlorate ion, $\mathrm{ClO}_{4}^{-{ }^{-1}}$?
A. Trigonal Planar
B. T-Shaped
C. Tetrahedral
D. Pyramidal
24. A group of students want to identify an unknown weak monoprotic acid by determining the molecular weight and the pK_{a}. The titration is done using a standardized 0.10 M NaOH solution. The students calibrate the pH -meter using a $\mathrm{pH}=10.0$ buffer solution. However, the students mistakenly used a pH -buffer solution of 7.00 for this single point calibration. How will this procedural error of using the buffer of pH 7 affect the values of the MW and pK_{a} of the monoprotic acid?

$$
\mathrm{pK}_{\mathrm{a}}
$$

A.
Too high
B. Unchanged
Too high
Too low
C. Too low Too high
D.
Too high
Too low
25. Which of the following figures correctly represents the products of the chemical reaction between $10.0 \mathrm{~mL} 0.20 \mathrm{M} \mathrm{BaCl}_{2}$ and $10.0 \mathrm{~mL} 0.20 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$ solutions?
A.

B.

C.

D.

Periodic Table and Chemistry Formulas 1-18-2016

58 Ce 140.1 9.	$\begin{array}{\|c} 59 \\ \mathbf{P r} \\ 140.9 \end{array}$	$\begin{gathered} 60 \\ \mathbf{N d} \\ 144.2 \end{gathered}$	$\begin{array}{\|c\|} \hline 61 \\ \mathrm{Pm}_{(145)} \\ (145) \end{array}$	$\begin{array}{\|c\|} \hline 62 \\ \mathrm{Sm} \\ 150.4 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 63 \\ \mathbf{E u} \\ \hline 152.0 \\ \hline \end{array}$	$\begin{gathered} 64 \\ \mathbf{G d} \\ 157.3 \end{gathered}$	$\begin{gathered} 65 \\ \mathbf{T b} \\ 158.9 \end{gathered}$	$\begin{array}{\|c} 66 \\ \text { Dy } \\ 162.5 \end{array}$	$\begin{array}{\|c\|} \hline 67 \\ \mathbf{H o} \\ 164.9 \\ \hline \end{array}$	$\begin{array}{\|c\|c} \hline 68 \\ \mathbf{E r} \\ \hline 167.3 \\ \hline \end{array}$	$\begin{aligned} & 69 \\ & \mathbf{T m} \\ & \mathbf{T} \mathbf{m} .9 \end{aligned}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.0 \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \hline 71 \\ \mathbf{L u} \\ 175.0 \\ \hline \end{array}$	Lanthanide Series
$\begin{gathered} 90 \\ \mathbf{T h} \\ 232.0 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 91 \\ \mathrm{~Pa} \\ 231.0 \end{array}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.0 \end{gathered}$	$\begin{aligned} & 93 \\ & \mathbf{N p} \\ & (237) \end{aligned}$	$\begin{gathered} 94 \\ \mathrm{Pu} \\ (244) \end{gathered}$	$\begin{array}{\|c} 95 \\ \text { Am } \\ (243) \end{array}$	$\begin{aligned} & 96 \\ & \text { Cm } \\ & (247) \end{aligned}$	$\begin{gathered} 97 \\ \text { Bk } \\ (247) \end{gathered}$	$\begin{aligned} & 98 \\ & \text { Cf } \\ & (251) \end{aligned}$	$\begin{array}{\|c} \hline 99 \\ \text { Es } \\ (252) \end{array}$	$\begin{aligned} & 100 \\ & \text { Fm } \\ & (257) \end{aligned}$	$\begin{array}{\|l\|} \hline 101 \\ \mathbf{M d} \\ (258) \\ \hline \end{array}$	$\begin{aligned} & 102 \\ & \text { No } \\ & (259) \end{aligned}$	$\begin{aligned} & 103 \\ & \mathbf{L r} \\ & (262) \end{aligned}$	Actinide Series

CHEMISTRY FORMULAS

GASES, LIQUIDS, SOLUTIONS $\mathrm{PV}=\mathrm{nRT}$	$\mathrm{d}=\mathrm{m}$	$\mathrm{P}=$ pressure	R, Gas constant $=8.31$ Joules
	V	$\mathrm{V}=$ volume	Mole Kelvin
		$\mathrm{T}=$ Temperature	$=0.0821$ liter atm
	$\sqrt{\frac{3 k t}{m}}=\sqrt{\frac{3 R T}{M}}$	T = Temperature	mole Kelvin
$\frac{\left(P+n^{2} a\right)(V-n b)}{V^{2}}=n R T$	(${ }^{m}=\sqrt{M}$	$\mathrm{d}=\text { density }$	$=8.31$ volts coulombs
		$\mathrm{m}=$ mass	mole Kelvin
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {total }} \bullet \mathrm{X}_{\mathrm{A}}$	$\mathrm{KE}_{\text {per molecule }}=\frac{\mathrm{mv}^{2}}{2}$	$\mathrm{v}=$ velocity	Boltzmann's constant,
		where $\mathrm{X}_{\mathrm{A}}=\underline{\text { moles } \mathrm{A}}$	$\mathrm{k}=1.38 \times 10^{-23}$ Joule
$\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+$	$\mathrm{KE}_{\text {per mole }}=\underline{3 R T}$	total moles	K
	Ker mole $\frac{}{}$		$\mathrm{K}_{\text {f water }}=1.86 \mathrm{Kelvin} / \mathrm{molal}$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}$		$\mathrm{u}_{\text {rms }}=$ root-mean-square-root	$\mathrm{K}_{\text {bwater }}=0.512 \mathrm{Kelvin} / \mathrm{molal}$
		KE = Kinetic energy	
	$\frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}$	r = rate of effusion	STP $=0.00{ }^{\circ} \mathrm{C}, 1.00 \mathrm{~atm}(101.3 \mathrm{kPa})$
Kelvin $={ }^{\circ} \mathrm{C}+273$	$\frac{r_{2}}{}=\sqrt{M_{1}}$	$\mathrm{M}=$ Molar mass	$=14.7 \mathrm{psi}$
		$\pi=$ osmotic pressure	
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$	M , molarity = moles solute	$\mathrm{i}=$ van't Hoff factor	1 faraday $\mathfrak{I}=96,500$ coulombs/ mole of
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$	liter of solution	$\mathrm{K}_{\mathrm{f}}=$ molal freezing point constant	${ }^{\circ} \mathrm{C} \times 9 / 5+32={ }^{\circ} \mathrm{F}$
	molality = moles of solute	$\mathrm{K}_{\mathrm{b}}=$ molal boiling point	$\left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9={ }^{\circ} \mathrm{C}$
$\underline{\underline{P}}_{1} \underline{1}_{1} \mathrm{~V}_{1}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \underline{\mathrm{~V}}_{2}$	molarity kg of solvent	$\mathrm{K}_{\mathrm{b}}=\underset{\text { constant }}{\text { molal boiling point }}$	(\%-32) F - $/ 9={ }^{\circ} \mathrm{C}$
	$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \bullet$ molality	$\mathrm{Q}=$ reaction quotient	
		$\mathrm{I}=$ current in amperes	
	$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \bullet$ molality	$\mathrm{q}=$ charge in coulombs	
		$\mathrm{t}=$ time	
		$\mathrm{E}^{\mathrm{o}}=$ standard reduction	
	$\pi=\underline{\mathrm{nRTi}}$	potential	
	V	Keq $=$ equilibrium constant	

ATOMIC STRUCTURE $\Delta \mathrm{E}=\mathrm{h} v$ $\mathrm{c}=\vee \lambda$ $\lambda=\underline{h}$ m v $\mathrm{p}=\mathrm{m} \mathrm{v}$ $\mathrm{E}_{\mathrm{n}}=\frac{-2.178 \times 10^{-18}}{\mathrm{n}^{2}} \text { joule }$ E = energy $v=$ frequency $\lambda=$ wavelength $\mathrm{p}=$ momentum $\mathrm{v}=$ velocity $\mathrm{n}=$ principal quantum number $\mathrm{c}=$ speed of light $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ $\mathrm{h}=$ Planck's constant $=6.63 \times 10^{-34}$ Joule s $\mathrm{k}=$ Boltzmann constant $=1.38 \times 10^{-23}$ joule $/ \mathrm{K}$ Avogadro's number $=6.02 \times 10^{23}$ molecules/mole $\mathrm{e}=$ electron charge $=-1.602 \times 10^{-19}$ coulomb 1 electron volt/atom $=96.5 \times 10^{23} \mathrm{kj} / \mathrm{mole}$	OXIDATION-REDUCTION ELECTROCHEMISTRY $\begin{gathered} \mathrm{Q}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{[}[\mathrm{B}]^{\mathrm{b}}} \\ \text { where a B }+\mathrm{bB} \Leftrightarrow \mathrm{c} \mathrm{C}+\mathrm{dD} \\ \mathrm{I}=\mathrm{q} / \mathrm{t} \quad \mathrm{I}=\text { amperes, } \mathrm{q}=\text { charge in coulombs, } \\ \mathrm{t}=\text { time in seconds. } \\ \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{\mathrm{RT} \ln \mathrm{Q}}{\mathrm{nI}}=\mathrm{E}^{\mathrm{o}}{ }_{\text {cell }}-\frac{0.0592 \log \mathrm{Q} @ 25^{\circ} \mathrm{C}}{\mathrm{n}} \\ \log \mathrm{~K}=\frac{\mathrm{nE}^{\mathrm{o}}}{0.0592} \end{gathered}$ 1 Faraday $\mathfrak{I}=96,500$ coulombs $/$ mole
EQUILIBIRUM TERMS $\mathrm{K}_{\mathrm{a}}=$ weak acid K_{b} = weak base $\mathrm{K}_{\mathrm{w}}=$ water $\mathrm{K}_{\mathrm{p}}=$ gas pressure $\mathrm{K}_{\mathrm{c}}=$ molar concentration	KINETICS EQUATIONS $A_{o}-A=k t \mathrm{~A}_{0}$ is initial concentration, amount. $\begin{gathered} \ln \frac{A_{o}}{A}=k t \\ \frac{1}{A}-\frac{1}{A_{o}}=k t \\ \ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T}-\frac{1}{T_{1}}\right) \end{gathered}$

THERMOCHEMISTRY $\Delta S^{0}=\sum \Delta S^{0}$ products $-\sum \Delta S^{0}$ reactants $\Delta \mathrm{H}^{0}=\Sigma \Delta \mathrm{H}^{0}$ products $-\Sigma \Delta \mathrm{H}^{0}$ reactants $\Delta \mathrm{G}^{0}=\Sigma \Delta \mathrm{G}^{0}$ products $-\Sigma \Delta \mathrm{G}^{0}$ reactants $\begin{gathered} \Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{~S}^{0} \\ \Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{RT} \ln \mathrm{~K}=-2.303 \mathrm{RT} \log \mathrm{~K} \end{gathered}$		Metal Activity Series					
						Metal	Metal Ion
						Lithium	Li^{+1}
						Potassium	K^{+1}
						Calcium	Ca^{+2}
					$\mathrm{C}_{\mathrm{p}}=$ molar heat capacity at constant pressure	Sodium	Na^{+1}
$\begin{gathered} \Delta \mathrm{G}^{0}=-\mathrm{nJ} \mathrm{E}^{0} \\ \Delta \mathrm{G}=\Delta \mathrm{G}^{0}+\mathrm{RT} \ln \mathrm{Q}=\Delta \mathrm{G}^{0}+2.303 \mathrm{RT} \log \mathrm{Q} \end{gathered}$					1 faraday $\mathfrak{I}=96,500$	Magnesium	Mg^{+2}
					coulombs/mole	Aluminum	Al^{+3}
					$\mathrm{C}_{\text {water }}=4.18$ joule	Manganese	Mn^{+2}
$\mathrm{q}=\mathrm{mC} \Delta \mathrm{T}$					${ }_{\text {water }} \frac{4}{\text { g K }}$	Zinc	Zn^{+2}
$\begin{aligned} \mathrm{C}_{\mathrm{p}} & =\frac{\Delta \mathrm{H}}{\Delta \mathrm{~T}} \\ \mathrm{q} & =\mathrm{mH}_{\mathrm{f}} \\ \mathrm{q} & =\mathrm{mH}_{\mathrm{v}} . \end{aligned}$					Water $\mathrm{H}_{\mathrm{f}}=\frac{330 \text { joules }}{\text { gram }}$	Chromium	$\mathrm{Cr}^{+2}, \mathrm{Cr}^{+3}$
					Water $\mathrm{H}_{\mathrm{v}}=\underline{2260 \text { joules }}$	Iron	$\mathrm{Fe}^{+2}, \mathrm{Fe}^{+3}$
					gram	Lead	$\mathrm{Pb}^{+2}, \mathrm{~Pb}^{+4}$
						Copper	$\mathrm{Cu}^{+1}, \mathrm{Cu}^{+2}$
						Mercury	Hg^{+2}
						Silver	Ag^{+1}
						Platinum	Pt^{+2}
						Gold	$\mathrm{Au}^{+1}, \mathrm{Au}^{+3}$

Chemistry II Answer Key Canary test April 14, 2016 (Corrections)

1. D(all full credit)	6. D	$11 . \mathrm{D}$	$16 . \mathrm{C}$	$21 . \mathrm{B}$
2. C	7. B	$12 . \mathrm{B}$	$17 . \mathrm{B}$	$22 . \mathrm{A}$
3. A	8. A	$13 . \mathrm{C}$	$18 . \mathrm{D}$	$23 . \mathrm{C}$
4. B(all full credit)	9.D	$14 . \mathrm{B}$	$19 . \mathrm{A}$	$24 . \mathrm{B}$
5. C	10. A	$15 . \mathrm{D}$	$20 . \mathrm{C}$	$25 . \mathrm{D}$

CHEMISTRY 11 For all second year and AP level students. 25 multiple choice questions per exam. JANUARY: matter and measurement, atomic theory (sub-atomic particles, atomic masses), spectroscopy (Beer's Law) chemical formulas, chemical equations (precipitation reactions, ionic equations, solubility, acid-base reactions, gas forming reactions, oxidation reduction reactions, balancing redox reactions by oxidation state method, activity series, mole relationships, mass-mass problems, stoichiometry of redox solutions, solutions stoichiometry, electronic structure and periodic table/periodicity.
FEBRUARY: chemical bonding, photon-electron spectroscopy doping and semiconductors, given molecular orbital diagram determine bond order, paramagnetism, and diamagnetism, electronegativity, Lewis structures, molecular geometry, polarity of molecules, hybridization($\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$), liquids, solids, vapor pressure, intermolecular forces, thermo chemistry (enthalpy, Hess's Law, heats of formation, bond energies, calorimetry), phase changes, gases, plus January topics.
MARCH: non-metals, metals(not unit cells), solutions, rates of reactions, reaction mechanisms, descriptive chemistry of the elements, plus Jan and Feb topics.
APRIL: chemical equilibrium, acids, bases, and salts, $K_{a}, K_{b}, K_{\text {sp }}$, buffers, redox, voltaic cells, $\Delta S, \Delta H, \Delta G$, descriptive chemistry of the elements, plus Jan, Feb., and Mar topics.

> | Testing Dates for 2016 |
| :--- |
| Thursday, April 14, 2016* |

*All areas and schools must complete the April exam and mail in the results by April 28th, 2016.

New Jersey Science League

PO Box 65 Stewartsville, NJ 08886-0065
Phone \#: 908-213-8923 Fax \#: 908-213-9391 email: newjsl@ptd.net
Web address: entnet.com/~personal/njscil/html
PLEASE RETURN THE AREA RECORD SHEET AND ALL REGULAR TEAM MEMBER
SCANTRONS (ALL STUDENTS PLACING $1^{\mathrm{ST}}, 2^{\mathrm{ND}}, 3^{\mathrm{RD}}, 4^{\mathrm{TH}}$).
If you return scantrons of the Alternates, then label them as ALTERNATES.

Dates for 2017 Season

Thursday, January 12, 2017 Thursday, March 9, 2017

