New Jersey Science League Canary Exam

Chemistry II Exam January 12, 2017 Corrections 15, 16, 17.

Answer the following questions on the answer sheet provided. Each correct response is worth 4 points. Use the letters in parentheses for your answers. Choose the letter that best completes or answers the item. Be certain that erasures are complete. Please PRINT your name, school area code, and which test you are taking on the scantron.

1. Which of the following analytical techniques is most suitable in determining the concentration of Ca^{2+} ions in aqueous solutions of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ aq? Calcium is a solid which reacts slowly with water. A flame test of calcium ions is red. Calcium ions in aqueous solutions are clear.
A. Visible Spectroscopy
C. Paper Chromatography
B. Flame Test
D. Titration
2. Natural gallium is a mixture of only two stable isotopes. One of the isotopes has 31 protons, 38 neutrons and a relative abundance of 60.11%. If the average atomic mass of gallium is 69.72 amu , how many neutrons must there be in the second isotope?
A. 38
B. 39
C. 40
D. 41
3. Which of the following 10.0 g samples contains the most Ca ions by mass?
A. CaCO_{3}
B. CaSO_{4}
C. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
D. $\mathrm{CaC}_{2} \mathrm{O}_{4}$
4. Which of the following cations has the smallest ionic radius?
A. Al^{3+}
B. Ca^{2+}
C. Na^{+}
D. Mg^{2+}
5. The following reaction is an example of \qquad reaction.

$$
\mathrm{ClO}_{3}^{-}(a q) \rightarrow \mathrm{ClO}_{4}^{-}(a q)+\mathrm{Cl}^{-}(a q)
$$

A. Ion-exchange
C. Precipitation
B. Ion-pairing
D. Oxidation-Reduction
6. If the correct systematic name of ammonium perchlorate is $\mathrm{NH}_{4} \mathrm{ClO}_{4}$, then what is the formula of ammonium oxalate?
A. $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{O}_{3}$
B. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
C. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{3}$
D. $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
7. First ionization energies (IE) of some elements are given below:

IE1 of $\mathrm{Ne}=2081 \mathrm{~kJ} / \mathrm{mol}$
IE1 of $\mathrm{Na}=495 \mathrm{~kJ} / \mathrm{mol}$
IE1 of $\mathrm{Mg}=738 \mathrm{~kJ} / \mathrm{mol}$
IE1 of $\mathrm{Al}=$?
IE1 of $\mathrm{Si}=786 \mathrm{~kJ} / \mathrm{mol}$
Which of the following can be the first ionization energy of Aluminum?
A. $578 \mathrm{~kJ} / \mathrm{mol}$
B. $759 \mathrm{~kJ} / \mathrm{mol}$
C. $498 \mathrm{~kJ} / \mathrm{mol}$
D. $802 \mathrm{~kJ} / \mathrm{mol}$
8. Which of the following pairs of quantities contain the largest difference in mass?
A. 1.0 mol of carbon -13 and 1.0 mol of carbon- 12
B. 1.0 mol of copper- 63 and 1.0 mol of copper- 65
C. 6.02×10^{23} atoms of nitrogen- 14 and 3.01×10^{23} atoms of nitrogen- 15
D. 10.0 mg of sodium- 23 and 10.0 mg of potassium-39
9. A scientist wants to determine the concentration of phosphate in wastewater. She generates a calibration curve represented in the figure below.

The scientist takes 1.00 mL of the sample and dilutes with distilled water in 10.00 mL volumetric flask. Subsequently, she takes 1.00 mL from this latter solution and makes another 100 -fold dilution. The final sample has an absorbance of 0.150 . What is the concentration of phosphate in the original sample in mg per liter?
A. $117 \mathrm{mg} /$ liter
B. $182 \mathrm{mg} /$ liter
C. $318 \mathrm{mg} /$ liter
D. $409 \mathrm{mg} /$ liter
10. A sample of 1.87 grams of an unknown metal carbonate, $\mathrm{M}_{2} \mathrm{CO}_{3}$, is strongly heated. The decomposition reaction is represented by the following balanced equation:

$$
\mathrm{M}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightarrow \mathrm{M}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

If only 1.43 grams of $\mathrm{M}_{2} \mathrm{O}$ are produced, what is the identity of the unknown metal?
A. Cu
B. Au
C. Na
D. K
11. Sulfuric acid is prepared by four successive chemical reactions (unbalanced).

$$
\begin{aligned}
& \mathrm{S}_{8}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{2}(g) \\
& \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{3}(g) \\
& \mathrm{SO}_{3}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(g) \\
& \mathrm{H}_{2} \mathrm{SO}_{4}(g) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(l)
\end{aligned}
$$

If each of the four reactions has a percent yield of 80%, how many grams of sulfuric acid will be produced from 256 grams of sulfur?
A. 321
B. 784
C. 520
D. 642
12. A compound is made of 10.22% of $\mathrm{N}, 2.92 \%$ of $\mathrm{H}, 46.72 \%$ of O , and the rest is a metal. What is this compound? $\mathrm{N}=14 ; \mathrm{H}=1 ; \mathrm{O}=16 ; \mathrm{V}=51 ; \mathrm{Mn}=55 ; \mathrm{Cr}=52$.
A. ammonium vanadate
C. ammonium permanganate
B. manganese(II) nitrate
D. ammonium dichromate
13. A metal oxide, $\mathrm{M}_{2} \mathrm{O}_{3}$, gives the following chemical reactions when heated with different reactants.
I. $\quad \mathrm{M}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(g) \rightarrow 2 \mathrm{M}(\mathrm{s})+3 \mathrm{CO}_{2}(g)$
II. $\quad \mathrm{M}_{2} \mathrm{O}_{3}(s)+2 \mathrm{Al}(s) \rightarrow 2 \mathrm{M}(s)+\mathrm{Al}_{2} \mathrm{O}_{3}(s)$
III. $\quad 3 \mathrm{M}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{M}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
IV. $\quad \mathrm{M}_{2} \mathrm{O}_{3}(s)+\mathrm{ZnO}(s) \rightarrow \mathrm{Zn}\left(\mathrm{MO}_{2}\right)_{2}(s)$

Which of the above reactions is not redox?
A. I
B. II and III
C. IV
D. III and IV
14. The five peaks in the mass spectrum shows that there are 2 isotopes of chlorine atoms with relative isotopic masses of 35 and 37 on the ${ }^{12} \mathrm{C}$ scale. Average atomic mass of the chlorine atoms is 35.45 amu . Which of the following choices is NOT correct for the mass spectrum of the chlorine sample?
A. Chlorine exists in nature as a diatomic molecule.
B. Chlorine- 35 is approximately 3 times more abundant than chlorine-37.
C. Peak $\mathrm{m} / \mathrm{z}=72$ caused by $\mathrm{Cl}_{2}{ }^{+}$molecular ions that contain one chlorine- 35 and one chlorine- 37 atom.
D. Peak $\mathrm{m} / \mathrm{z}=74$ is called the "base peak".

15. Which species can act as a reducing agent but NOT as an oxidizing agent? No longer part of the AP Chem curriculum.
A. Br_{2}
B. Li
C. Au^{3+}
D. F_{2}
16. When the following reaction is balanced using the smallest whole-number coefficients, the coefficient of $\mathrm{H}_{2} \mathrm{O}$ will be equal to all full credit. Water left out There needs to be some statement about adding water to the equation. Otherwise students and teachers will think this equation is missing water not realizing that water is implied.
\qquad $\mathrm{MnO}_{4}{ }^{-}+$ \qquad $\mathrm{SO}_{3}{ }^{2-} \rightarrow$ \qquad $\mathrm{MnO}_{2}+$ \qquad $\mathrm{SO}_{4}{ }^{2-}$
A. 1
B. 2
C. 3
D. 6
17. Consider the following equation:

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

When 22.8 grams of $\mathrm{C}_{8} \mathrm{H}_{18}$ react with 90.0 grams of O_{2}, what will be the maximum amount of CO_{2} produced?
No answer is correct. All full credit. An is 70.2 grams.
A. 40.0 grams
B. 79.2 grams
C. 140. grams
D. 160. grams
18. When mixed, which of the following set of solutions will produce the largest mass of precipitate?
0.10 M of BaCl

2 $\quad \frac{0.20 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}}{1 \text { A. } 2.0 \mathrm{~mL}}$| 1.0 mL |
| :--- |
| B. 1.0 mL |
| C. 2.5 mL |
| D. 3.0 mL |

19. In which of the following compounds the nitrogen atoms have the highest oxidation state?
A. NH_{3}
B. $\mathrm{CH}_{3} \mathrm{NH}_{2}$
C. HCN
D. $\mathrm{N}_{2} \mathrm{O}$
20. The electron configuration of $[\mathrm{Ar}] 3 d^{10}$ belongs to \qquad ion.
A. Ni^{2+}
B. Fe^{2+}
C. Cu^{+}
D. Cu^{2+}
21. A compound consists of C, H, and S . Which compounds will be produced during the complete combustion of this compound with stoichiometric amount of O_{2} ?
A. CO and $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CO}, \mathrm{H}_{2}$, and SO_{2}
C. $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$, and SO_{2}
D. $\mathrm{CO}_{2}, \mathrm{H}_{2}$, and SO_{2}
22. The density of the sugar solutions at various concentrations is tabulated below. A student determined the density of degassed (flat soda) Sprite ${ }^{\circledR}$ to be $1.060 \mathrm{~g} / \mathrm{mL}$. What is the sugar content in a $12-\mathrm{oz}$ can of Sprite ${ }^{\circledR}$. (1 US fluid ounce is 28 mL).
A. 20.0 grams
B. 28.0 grams
C. 50.4 grams
D. 67.2 grams

Density $(\mathrm{g} / \mathrm{mL})$	\% by weight $(\mathrm{w} / \mathrm{v})$
0.998	0
1.018	5
1.038	10
1.059	15
1.081	20
1.104	25
1.127	30
1.151	35
1.176	40

23. Which sublevel is being filled in the Actinides series?
A. $5 f$
B. $4 f$
C. $3 f$
D. $4 d$
24. Which of the following electron configurations represents an excited state of a potassium atom?
A. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 6 s^{1}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$
D. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
25. A mixture of gases, X_{2} and Y_{2}, was reacted in a closed container according to the following equation:

$$
\mathrm{X}_{2}(g)+\mathrm{Y}_{2}(g) \rightarrow 2 \mathrm{XY}(g)
$$

The resulting gas mixture had a molar composition as follows: $30 \% \mathrm{X}_{2}, 20 \% \mathrm{Y}_{2}$, and $50 \% \mathrm{XY}$. What was the molar composition of X_{2} in the initial mixture?
A. 40%
B. 50%
C. 55%
D. 60%

Periodic Table and Chemistry Formulae Final copy 1-20-2017

$\begin{array}{\|c} \hline 58 \\ \mathrm{Ce} \\ 140.1 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 59 \\ \mathrm{Pr} \\ 140.9 \\ \hline \end{array}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 144.2 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 61 \\ \text { Pm } \\ (145) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 62 \\ \text { Sm } \\ 150.4 \\ \hline \end{array}$	$\begin{gathered} 63 \\ \text { Eu } \\ 152.0 \\ \hline \end{gathered}$	$\begin{array}{\|c} 64 \\ \text { Gd } \\ 157.3 \\ \hline \end{array}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \\ 158.9 \\ \hline \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 67 \\ \mathrm{Ho} \\ 164.9 \\ \hline \end{array}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.3 \\ \hline \end{gathered}$	$\begin{gathered} 69 \\ \mathrm{Tm}_{168.9} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 70 \\ \mathbf{Y b} \\ 173.0 \\ \hline \end{array}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ \text { Lu5.0 } \\ \hline \end{gathered}$	Lanthanide Series
$\begin{array}{\|l} \hline 90 \\ \text { Th } \\ 232.0 \\ \hline \end{array}$	$\begin{gathered} 91 \\ \mathrm{~Pa} \\ 231.0 \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.0 \end{gathered}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \\ & (237) \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \\ & (244) \end{aligned}$	$\begin{aligned} & 95 \\ & \text { Am } \\ & (243) \end{aligned}$	$\begin{aligned} & 96 \\ & \mathrm{Cm} \\ & (247 \end{aligned}$	97 Bk (247)	$\begin{aligned} & 98 \\ & \text { Cf } \\ & (251) \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \\ & (252) \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & \text { Fm } \\ & (257) \end{aligned}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \\ & (258) \\ & \hline \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \\ & (259) \end{aligned}$	$\begin{aligned} & 103 \\ & \mathbf{L r} \\ & (262) \end{aligned}$	Actinide Series

CHEMISTRY FORMULAS

$\begin{gathered} \begin{array}{c} \text { GASES, LIQUIDS, } \\ \text { SOLUTIONS } \\ \text { PV }=n R T \end{array} \\ \begin{array}{c} \left(\mathrm{P}+\mathrm{n}^{2} \mathrm{a}\right)(\mathrm{V}-\mathrm{nb})=\mathrm{nRT} \\ \mathrm{~V}^{2} \end{array} \\ \mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {total }} \bullet \mathrm{X}_{\mathrm{A}} \\ \mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+ \\ \mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \\ \text { Kelvin }={ }^{\circ} \mathrm{C}+273 \\ \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\ \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \\ \underline{\mathrm{P}}_{1} \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \underline{\mathrm{~V}}_{2} \end{gathered}$	$\begin{aligned} & \mathrm{d}=\frac{\mathrm{m}}{\mathrm{~V}} \\ & \mathrm{u}_{\mathrm{rms}}=\sqrt{\frac{3 k t}{m}}=\sqrt{\frac{3 R T}{M}} \\ & \mathrm{KE}_{\text {per molecule }}=\frac{\mathrm{mv}^{2}}{2} \\ & \mathrm{KE}_{\text {per mole }}=\frac{3 \mathrm{RT}}{2} \\ & \frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}} \\ & \mathrm{M}, \text { molarity }=\text { moles solute } \\ & \text { liter of solution } \end{aligned}$	```P = pressure \(\mathrm{V}=\) volume \(\mathrm{T}=\) Temperature \(\mathrm{n}=\) number of moles \(\mathrm{d}=\) density \(\mathrm{m}=\) mass \(\mathrm{v}=\) velocity where \(X_{A}=\underline{\text { moles } A}\) total moles \(\mathrm{u}_{\mathrm{mms}}=\) root-mean-square-root KE = Kinetic energy \(r=\) rate of effusion \(\mathrm{M}=\) Molar mass \(\pi=\) osmotic pressure i = van't Hoff factor \(\mathrm{K}_{\mathrm{f}}=\) molal freezing point constant \(\mathrm{K}_{\mathrm{b}}=\) molal boiling point constant \(\mathrm{Q}=\) reaction quotient I =current in amperes \(\mathrm{q}=\) charge in coulombs \(\mathrm{t}=\) time \(\mathrm{E}^{\mathrm{o}}=\) standard reduction potential Keq = equilibrium constant```	

ATOMIC STRUCTURE	$\mathrm{E}=$ energy	OXIDATION-REDUCTION
$\Delta \mathrm{E}=\mathrm{h} v$	$v=$ frequency	ELECTROCHEMISTRY
$\mathrm{c}=\mathrm{v} \lambda$	$\lambda=$ wavelength	
	$\mathrm{p}=$ momentum	$\mathrm{Q}=[\mathrm{C}]^{\mathrm{C}}[\mathrm{D}]^{\mathrm{d}}$
$\lambda=\underline{h}$	$\mathrm{v}=$ velocity	[A] ${ }^{\text {a }}$ B] ${ }^{\text {b }}$
m v	$\mathrm{n}=$ principal quantum number	where $\mathrm{a} \mathrm{B}+\mathrm{bB} \leftrightarrow \mathrm{cC}+\mathrm{dD}$
	$\mathrm{c}=$ speed of light $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	
p mv	$\begin{gathered} \mathrm{h}=\text { Planck's constant }=6.63 \times 10^{-34} \text { Joule s } \\ \mathrm{k}=\text { Boltzmann } \end{gathered}$	$\begin{gathered} I=q / t \quad I=\text { amperes, } q=\text { charge in coulombs, } \\ t=\text { time in seconds. } \end{gathered}$
$\mathrm{E}_{\mathrm{n}}=\frac{-2.178 \times 10^{-18}}{\mathrm{n}^{2}}$ joule	$\begin{gathered} \text { constant }=1.38 \times 10^{-23} \text { joule } / \mathrm{K} \\ \text { Avogadro's number }=6.02 \times 10^{23} \\ \text { molecules } / \text { mole } \end{gathered}$	$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{\mathrm{RT} \ln \mathrm{Q}}{\mathrm{n} \mathfrak{I}}=\mathrm{E}_{\text {cell }}^{0}-\frac{0.0592 \log \mathrm{Q} @ 25^{\circ} \mathrm{C}}{\mathrm{n}}$
	coulomb	$\log \mathrm{K}=\frac{\mathrm{nE}}{} \mathrm{E}^{0}$
	1 electron volt/atom $=96.5 \times 10^{23} \mathrm{kj} / \mathrm{mole}$	1 Faraday $\mathfrak{I}=90.0592$ 9600 coulombs $/$ mole

EQUILIBRIUM	EQUILIBIRUM
$\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$	TERMS
	$\mathrm{K}_{\mathrm{a}}=$ weak acid
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] ; \quad \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$	$\mathrm{K}_{\mathrm{b}}=\text { weak base }$ $\mathrm{K}_{\mathrm{w}}=\text { water }$
$\mathrm{pH}+\mathrm{pOH}=14$	$\mathrm{K}_{\mathrm{p}}=$ gas pressure
	$\mathrm{K}_{\mathrm{c}}=$ molar
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\mathrm{A}^{-1}\right]$	concentration
[HA]	
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \left[\mathrm{HB}^{+}\right]$	
[B]	
$\mathrm{pK} \mathrm{a}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}, \quad \mathrm{pK} \mathrm{K}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}$	
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$	
= moles product gas - moles reactant	

KINETICS EQUATIONS

$A_{o}-A=k t \mathrm{~A}_{0}$ is initial concentration, amount.

$$
\ln \frac{A_{o}}{A}=k t
$$

$$
\frac{1}{A}-\frac{1}{A_{o}}=k t
$$

$$
\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

THERMOCHEMISTRY	$\mathrm{S}^{0}=$ standard entropy	Metal	eries
	$\mathrm{G}^{\mathrm{o}}=\text { standard free energy }$	Metal	Metal Ion
$\Delta \mathrm{H}^{0}=\Sigma \Delta \mathrm{H}^{0}$ products $-\sum \Delta \mathrm{H}^{0}$ reactants	$\mathrm{E}^{0}=$ standard reduction potential	Li	Li^{+1}
$\Delta \mathrm{G}^{0}=\sum \Delta \mathrm{G}^{0}$ products $-\sum \Delta \mathrm{G}^{0}$ reactants	$\mathrm{T}=$ temperature	K	K^{+1}
$\Delta G^{\circ}=\sum \Delta G^{\circ}$ products - $\sum \Delta G^{\circ}$ reac	$\mathrm{q}=\text { heat }$	Ba	$\mathrm{Ba}{ }^{+2}$
$\Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{S}^{0}$	$\mathrm{c}=$ specific heat capacity	Ca	Ca^{+2}
$\Delta \mathrm{G}^{0}=-\mathrm{RT} \ln \mathrm{K}=-2.303 \mathrm{RT} \log \mathrm{K}$		Na	Na^{+1}
	$\mathrm{C}_{\mathrm{p}}=$ molar heat capacity at constant pressure	Mg	Mg^{+2}
$\Delta \mathrm{G}^{0}=-\mathrm{nJ} \mathrm{E}^{0}$	1 faraday $\mathfrak{I}=96,500$	A1	Al^{+3}
$\Delta \mathrm{G}=\Delta \mathrm{G}^{0}+\mathrm{RT} \ln \mathrm{Q}=\Delta \mathrm{G}^{0}+2.303 \mathrm{RT} \log \mathrm{Q}$	coulombs/mole	Mn	Mn^{+2}
		Zn	Zn^{+2}
$\mathrm{q}=\mathrm{mC}$ C $\Delta \mathrm{T}$	$\mathrm{C}_{\text {water }}=\frac{4.18 \text { joule }}{\mathrm{g}}$	Cr	Cr^{+3}
$q=m C \Delta T$	Water $\mathrm{H}_{\mathrm{f}}=330$ ioules	Fe	Fe^{+2}
$\mathrm{C}_{\mathrm{p}}=\Delta \mathrm{H}$	$\text { Water } \mathrm{H}_{\mathrm{f}}=\frac{330 \text { joules }}{\text { gram }}$	Co	Co^{+2}
$-\frac{\Delta 11}{\Delta T}$	Water $\mathrm{H}_{\mathrm{v}}=\underline{2260}$ joules	Ni	$\mathrm{Ni}{ }^{+2}$
	gram	Sn	Sn^{+2}
$\mathrm{q}=\mathrm{mH}_{\mathrm{f}}$	$\Delta \mathrm{U}=$ change internal energy of	Pb	Pb^{+2}
	a system	H_{2}	$2 \mathrm{H}^{+1}$
$\mathrm{q}=\mathrm{mH}_{\mathrm{v}}$.	$\Delta \mathrm{H}=$ change in energy of a	Cu	Cu^{+2}
$\Delta \mathrm{U}=\Delta \mathrm{H}-\mathrm{P} \Delta \mathrm{V}$	system	Ag	Ag^{+1}
	-P $\Delta \mathrm{V}=$ work of gases	Hg	Hg^{+2}
	11iter-atm = 101.325 J	Pt	Pt^{+2}
		Au	Au^{+3}

Chemistry II Answer Key Canary test

Date: Jan 12, 2017 Corrections \#15 not an ap topic

1	D	6	B	11	A	16	A(all full credit)	21	C
2	C	7	A	12	C	17	B(all full credit	22	C
3	A	8	C	13	C	18	C	23	A
4	A	9	D	14	D	19	D	24	B
5	D	10	A	15	B (all full credit)	20	C	25	C

CHEMISTRY 11 For all second year and AP level students. 25 multiple choice questions per EXAM.

JANUARY: matter and measurement, atomic theory (sub-atomic particles, atomic masses), spectroscopy (Beer's Law) chemical formulas, chemical equations (precipitation reactions, ionic equations, solubility, acid-base reactions, gas forming reactions, oxidation reduction reactions, balancing redox reactions by oxidation state method, activity series, mole relationships, mass-mass problems, stoichiometry of redox solutions, solutions stoichiometry, electronic structure and periodic table/periodicity.
FEBRUARY: chemical bonding, bond order (no molecular orbital theory), photon-electron spectroscopy, doping and semiconductors, paramagnetism, and diamagnetism, electronegativity, Lewis structures, molecular geometry, polarity of molecules, hybridization($\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$), intermolecular forces (van der Waals forces, relations between boiling point and vapor pressure), thermochemistry (enthalpy, Hess's Law, heats of formation, bond energies, calorimetry), phase changes (not PT diagrams), gases and gas laws, plus January topics.
MARCH: non-metals, metals (not unit cells), solutions, rates of reactions, reaction mechanisms, descriptive chemistry of the elements, plus Jan and Feb topics.
APRIL: chemical equilibrium, acids, bases, and salts (hydrolysis), $\mathrm{K}_{\mathrm{a}}, \mathrm{K}_{\mathrm{b}}$, buffers, solution equilibria, redox, voltaic cells, thermodynamics ($\Delta S, \Delta H$, and ΔG), descriptive chemistry of the elements, plus Jan, Feb., and Mar topics.

Dates for 2017 Season

Thursday January 12, 2017 Thursday February 9, 2017
Thursday March 9, 2017 Thursday April 13, 2017
All areas, schools must complete the April exam and mail in the results by April 28 ${ }^{\text {th }}, 2017$
New Jersey Science League
PO Box 65 Stewartsville, NJ 08886-0065
phone \# 908-213-8923 fax \# 908-213-9391 email: newjsl@ptd.net
Web address: $\underline{\text { http://entnet.com/~personal/njscil/html/ }}$

What is to be mailed back to our office?
PLEASE RETURN THE AREA RECORD AND ALL TEAM MEMBER SCANTRONS (ALL
STUDENTS PLACING $1^{\text {ST }}, 2^{\mathrm{ND}}, 3^{\mathrm{RD}}$, AND 4^{TH}).
If you return scantrons of alternates, then label them as ALTERNATES.
Dates 2018 Season
Thursday January 11, 2018 Thursday February 8, 2018
Thursday March 8, 2018 Thursday April 12, 2018

New Jersey Science League Canary test

Chemistry II Exam February 9, 2017 Corrections:
Answer the following questions on the answer sheet provided. Each correct response is worth 4 points. Use the letters in parentheses for your answers. Choose the letter that best completes or answers the item. Be certain that erasures are complete. Please PRINT your name, school area code, and which test you are taking on the scantron.

1. The boiling point of pure water at 1 atm is $100^{\circ} \mathrm{C}$. The boiling point of $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ are $66^{\circ} \mathrm{C}$ and $77^{\circ} \mathrm{C}$, respectively. Which statement below is true for these substances?
A. $\mathrm{CH}_{3} \mathrm{OH}$ has the lowest vapor pressure
B. $\mathrm{H}_{2} \mathrm{O}$ has the lowest vapor pressure
C. $\mathrm{H}_{2} \mathrm{O}$ boils lower than $100^{\circ} \mathrm{C}$ at 1.1 atm
D. They all have the same vapor pressures under the same conditions
2. Which cation is colorless in aqueous solutions?
A. Fe^{2+}
B. Fe^{3+}
C. Cr^{3+}
D. Zn^{2+}
3. Consider the following thermo chemical equations:

$$
\begin{array}{ll}
2 \mathrm{~A}_{2}+\mathrm{B}_{2} & \rightarrow 2 \mathrm{~A}_{2} \mathrm{~B} \\
\mathrm{C}+\mathrm{A}_{2} \mathrm{~B} & \rightarrow 2 \mathrm{D} \\
\mathrm{~A}_{2}+\mathrm{E}+3 \mathrm{~B}_{2} & \rightarrow 2 \mathrm{D}
\end{array}
$$

$$
\Delta H=-550 \mathrm{~kJ}
$$

$$
\Delta H=-100 . \mathrm{kJ}
$$

$$
\Delta H=-350 \mathrm{~kJ}
$$

What is the value of $\Delta \mathrm{H}$ for the following reaction?
$2 \mathrm{E}+5 \mathrm{~B}_{2} \rightarrow 2 \mathrm{C}$
A. 50. kJ
B. -75 kJ
C. -50. kJ
D. -150 kJ
4. Which of the following species will conduct electricity in either liquid or solid state?
A. NaCl
B. Ag
C. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
D. I_{2}
5. A sample of volatile liquid is placed in 125 mL container and volatilized. The vapor exerts a pressure of 2.5 atm at a temperature of $100.0^{\circ} \mathrm{C}$. The mass of the vapor is 1.03 grams. What might be the identity of the volatile liquid?
A. $\mathrm{CH}_{3} \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
C. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CHCHCOOH}$
6. Which of the following pairs of species will have largest difference in their photoelectron spectra?
A. Na^{+}and Mg^{2+}
B. Mg^{2+} and Ne
C. K^{+}and Na^{+}
D. Al^{3+} and Mg^{2+}
7. The first compound isolated during the fractional distillation of a mixture containing $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, $\mathrm{OHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, and $\mathrm{CH}_{3} \mathrm{COOH}$ is
A. $\mathrm{CH}_{3} \mathrm{OH}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
C. $\mathrm{OHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
D. $\mathrm{CH}_{3} \mathrm{COOH}$
8. The safe level of Pb^{2+} ions in drinking water supplies is established by EPA to be less than 15 ppb . A town located downstream from a car battery manufacturing plant was concerned about lead II ions leaking into the water streams. A chemist analyzed the water sample and determined that a 100-mL sample contains 8.213 nmol of Pb^{2+} ions. What is the concentration of lead in the water sample?
A. 1.70 ppb
B. 17.0 ppb
C. 170. ppb
D. 1700 ppb
9. Calculate the lattice energy of KBr by use of the following thermodynamic data.

Enthalpy of formation of $\mathrm{KBr}(\mathrm{s})$	$-394 \mathrm{~kJ} / \mathrm{mol}$
Enthalpy of sublimation of $\mathrm{K}(\mathrm{s})$	$89 \mathrm{~kJ} / \mathrm{mol}$
lonization energy of $\mathrm{K}(\mathrm{g})$	$419 \mathrm{~kJ} / \mathrm{mol}$
Enthalpy of dissociation of $\mathrm{Br}_{2}(\mathrm{~g})$	$192 \mathrm{~kJ} / \mathrm{mol}$
Electron affinity of $\mathrm{Br}(\mathrm{g})$	$-325 \mathrm{~kJ} / \mathrm{mol}$
Heat of vaporization of Br_{2}	$30 \mathrm{~kJ} / \mathrm{mol}$

A. 688 kJ
B. -688 kJ
C. 799 kJ
D. -799 kJ
10. In the determination of the heat of neutralization of an aqueous HCl with a NaOH solution, all of the following laboratory equipment is required EXCEPT
A. Calorimeter
C. Thermometer
B. Graduated cylinder
D. Evaporating dish
11. The strongest type of intermolecular forces in CHF_{3} molecule is
A. Hydrogen bonding
C. Covalent
B. Dipole-dipole
D. London dispersion
12. SO_{2} will dissolve in water to produce sulfurous acid. During this process, the geometry around the sulfur atom changes from
A. Linear to trigonal planar
C. Linear to tetrahedral
B. Bent to trigonal pyramidal
D. Bent to trigonal planar
13. CO_{2} is a nonpolar molecule. The symmetry in the molecule is due to the presence of the two symmetric stretching forces pulling one another in opposite directions. However, the asymmetric stretching vibrational mode can be detected. Photons causing vibrational but not electronic transitions have energies in which region of the electromagnetic spectrum?
A. γ-rays
B. X-rays
C. UV
D. IR
14. Calculate the work involved in the following reaction when 2.70 grams of aluminum react with excess hydrochloric acid to generate hydrogen gas at STP? AI $=27$. Work formula in heat formulae at end of the exam.

$$
2 \mathrm{Al}(s)+6 \mathrm{HCl}(a q) \rightarrow 2 \mathrm{AlCl}_{3}(s)+3 \mathrm{H}_{2}(g)
$$

A. 340. J
B. 170. J
C. -170 . J
D. -340 . J
15. What is the nitrate ions concentration when 10.0 mL of 0.50 M calcium nitrate is added to 40.0 mL 0.50 M of ferric nitrate solution?
A. 0.50 M
B. 0.70 M
C. 1.4 M
D. 2.8 M
16. Which of the following would have the lowest heat of vaporization?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
C. $\mathrm{OHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
17. Copper(II) salt hydrates are used in water of hydration experiments. Moderate heating makes the salt lose its crystal water according to the following equation:

$$
\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}(s) \rightarrow \mathrm{CuSO}_{4}(\mathrm{~s})+5 \mathrm{H}_{2} \mathrm{O}(g)
$$

However, excessive heating may decompose the anhydrous salt further and give off toxic fumes according to the equation below:

$$
\mathrm{CuSO}_{4}(\mathrm{~s}) \rightarrow \mathrm{CuO}(\mathrm{~s})+\mathrm{SO}_{3}(g)
$$

If $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \bullet 3 \mathrm{H}_{2} \mathrm{O}$ is heated excessively, which of the following gases will be produced in this redox reaction? One of the gases produced has a reddish brown color.
A. $\mathrm{H}_{2} \mathrm{O}, \mathrm{NO}_{2}$ and O_{2}
B. O_{2} and $\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{H}_{2} \mathrm{O}$ only
D. NO_{2}, and O_{2}
18. A burette is a piece of laboratory glassware to precisely measure the volume of solution delivered. The figures below show the volumes of the titrant in the burette before and after the titration process. What is the volume of the titrant delivered during the experiment? Markings to 1 ml therefore estimate to nearest 0.1 ml C is correct, not D .
A. 20 mL
B. $20 . \mathrm{mL}$
C. 20.0 mL
D. 20.00 mL

Before titration
19. Which of the following pairs of entities have the same shape according to the VSEPR model?
A. $\mathrm{CO}_{3}{ }^{2-}$ and $\mathrm{NO}_{3}{ }^{-}$
B. CO_{2} and SO_{2}
C. $\mathrm{NO}_{3}{ }^{-}$and NH_{3}
D. XeO_{3} and SO_{3}
20. In which of the following pairs is the first species closest in size to the second one? All Full credit. B is actually the best choice. D is not correct. Using periodic trends can only give a best guess, not an absolute answer.
A. $\mathrm{Mg}^{2+}, \mathrm{Na}$
B. $\mathrm{Mg}^{2+}, \mathrm{Li}^{+}$
C. $\mathrm{Mg}^{2+}, \mathrm{Na}^{+}$
D. $\mathrm{Mg}^{2+}, \mathrm{Li}$
21. A rigid 1-L container contains Ne gas at $27^{\circ} \mathrm{C}$. An equal mass of Ar is then introduced to the vessel. The temperature remains constant. What is the value of the new pressure?
A. The pressure will remain unchanged
B. The pressure will double
C. The pressure will be halved
D. The new pressure will be 1.5 times higher
22. A student wanted to identify the presence of the iodide ions in an aqueous sample. The student oxidized the iodide ions to iodine $\left(I_{2}\right)$ using Fe^{3+} ions in acidic solution. Then extracted the iodine, $\left(\mathrm{I}_{2}\right)$ using \qquad . The student then positively identified the iodine $\left(I_{2}\right)$ by its color in the new phase above the aqueous solution (upper layer) being \qquad —.
A. hexane, yellow
C. hexane, purple
B. mineral oil, yellow
D. mineral oil, orange
23. The Photo Electron Spectra of two different elements are given in the figure below.

Which one of the following statements is NOT correct?
A. Both elements belong to second period of the periodic table.
B. Element A has higher ionization energy than element B
C. Element B has higher ionization energy than element A
D. Element B has more electrons on its p orbitals

24. Which of the following statements is correct for the second period elements of the periodic table?
A. The all have the same effective nuclear charges
B. They all have the same number of core electrons
C. Their atomic size increases from left to right
D. Collectively, they are called alkali earth metals
25. Which compound below would be expected to be the least soluble in water?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~F}$
C. $\mathrm{CH}_{3} \mathrm{OH}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
D. $\mathrm{CH}_{3} \mathrm{COOH}$

Periodic Table and Chemistry Formulae Final copy 2-17-2017

$\begin{array}{\|c} \hline 58 \\ \mathrm{Ce} \\ 140.1 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 59 \\ \mathrm{Pr} \\ 140.9 \\ \hline \end{array}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 144.2 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 61 \\ \text { Pm } \\ (145) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 62 \\ \text { Sm } \\ 150.4 \\ \hline \end{array}$	$\begin{gathered} 63 \\ \text { Eu } \\ 152.0 \\ \hline \end{gathered}$	$\begin{array}{\|c} 64 \\ \text { Gd } \\ 157.3 \\ \hline \end{array}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \\ 158.9 \\ \hline \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 67 \\ \mathrm{Ho} \\ 164.9 \\ \hline \end{array}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.3 \\ \hline \end{gathered}$	$\begin{gathered} 69 \\ \mathrm{Tm}_{168.9} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 70 \\ \mathbf{Y b} \\ 173.0 \\ \hline \end{array}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ \text { Lu5.0 } \\ \hline \end{gathered}$	Lanthanide Series
$\begin{array}{\|l} \hline 90 \\ \text { Th } \\ 232.0 \\ \hline \end{array}$	$\begin{gathered} 91 \\ \mathrm{~Pa} \\ 231.0 \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.0 \end{gathered}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \\ & (237) \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \\ & (244) \end{aligned}$	$\begin{aligned} & 95 \\ & \text { Am } \\ & (243) \end{aligned}$	$\begin{aligned} & 96 \\ & \mathrm{Cm} \\ & (247 \end{aligned}$	97 Bk (247)	$\begin{aligned} & 98 \\ & \text { Cf } \\ & (251) \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \\ & (252) \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & \text { Fm } \\ & (257) \end{aligned}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \\ & (258) \\ & \hline \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \\ & (259) \end{aligned}$	$\begin{aligned} & 103 \\ & \mathbf{L r} \\ & (262) \end{aligned}$	Actinide Series

CHEMISTRY FORMULAS

GASES, LIQUIDS, SOLUTIONS $\mathrm{PV}=\mathrm{nRT}$	$\mathrm{d}=\mathrm{m}$	P = pressure	R, Gas constant $=8.31$ Joules
	V	$\mathrm{V}=$ volume	Mole Kelvin
	$3 \mathrm{kt} \quad 3 \mathrm{RT}$	$\mathrm{T}=$ Temperature	$=0.0821$ liter atm
	$\mathrm{u}_{\mathrm{ms}}=\sqrt{\frac{3 k t}{}}=\sqrt{\frac{3 R T}{M}}$	$\mathrm{n}=$ number of moles	mole Kelvin
$\frac{\left(P+n^{2} a\right)(V-n b)}{V^{2}}=n R T$	$\mathrm{u}_{\mathrm{ms}} \sqrt{m} \sqrt{M}$	d = density	$=8.31$ volts coulombs
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {total }} \bullet \mathrm{X}_{\mathrm{A}}$	$\mathrm{KE}_{\text {per molecule }}=\frac{\mathrm{mv}^{2}}{2}$	$\mathrm{v}=$ velocity	Boltzmann's constant,
		where $\mathrm{X}_{\mathrm{A}}=\underline{\text { moles A }}$	$\mathrm{k}=1.38 \times 10^{-23}$ Joule
$\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+$	$\mathrm{KE}_{\text {per mole }}=\underline{3 R T}$	total moles	K
	$\mathrm{KE}_{\text {per mole }}=\frac{3 \mathrm{KI}}{2}$	$\mathrm{u}_{\text {mms }}=$ root-mean-square-root	$\mathrm{K}_{\text {f water }}=1.86 \mathrm{Kelvin} / \mathrm{molal}$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{m}}$		KE = Kinetic energy	$\mathrm{K}_{\mathrm{b} \text { water }}=0.512 \mathrm{Kelvin} / \mathrm{molal}$
		$\mathrm{r}=$ rate of effusion	
Kelvin $={ }^{\circ} \mathrm{C}+273$	$\frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}$	M = Molar mass	$\begin{gathered} \mathrm{STP}=0.00^{\circ} \mathrm{C}, 1.00 \mathrm{~atm}(101.3 \mathrm{kPa}=760 \\ \mathrm{mm} \text { of } \mathrm{Hg}=760 \mathrm{Torr}) \end{gathered}$
	$r_{2} \sqrt{M_{1}}$	$\pi=$ osmotic pressure	$=14.7 \mathrm{psi}$
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$	M , molarity = moles solute	i = van't Hoff factor K_{f} = molal freezing point	
	liter of solution	constant	1 faraday $\mathfrak{J}=96,500$ coulombs $/$ mole of
$\frac{V_{1}}{\mathrm{~V}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$		$\mathrm{K}_{\mathrm{b}}=$ molal boiling point	${ }^{\circ} \mathrm{C} \times 9 / 5+32={ }^{\circ} \mathrm{F}$
$\underline{\underline{P}}_{1} \underline{\mathrm{~V}}_{1} \mathrm{~V}_{1}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \underline{\mathrm{~V}_{2}}$		$\mathrm{Q}=$ reaction quotient	$\left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9={ }^{\circ} \mathrm{C}$
		$\mathrm{I}=$ current in amperes	
$\mathrm{T}_{1} \quad \frac{\mathrm{~T}_{2}}{}$		$\mathrm{q}=$ charge in coulombs	
		$\mathrm{t}=$ time	
		$\mathrm{E}^{0}=$ standard reduction	
		potential	
		Keq = equilibrium constant	

ATOMIC STRUCTURE	$\mathrm{E}=$ energy	OXIDATION-REDUCTION
$\Delta \mathrm{E}=\mathrm{h} v$	$v=$ frequency	ELECTROCHEMISTRY
$\mathrm{c}=\mathrm{v} \lambda$	$\lambda=$ wavelength	
	$\mathrm{p}=$ momentum	$\mathrm{Q}=[\mathrm{C}]^{\mathrm{C}}[\mathrm{D}]^{\mathrm{d}}$
$\lambda=\underline{h}$	$\mathrm{v}=$ velocity	[A] ${ }^{\text {a }}$ B] ${ }^{\text {b }}$
m v	$\mathrm{n}=$ principal quantum number	where $\mathrm{a} \mathrm{B}+\mathrm{bB} \leftrightarrow \mathrm{cC}+\mathrm{dD}$
	$\mathrm{c}=$ speed of light $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	
$\mathrm{p}=\mathrm{mv}$	$\begin{gathered} \mathrm{h}=\text { Planck's constant }=6.63 \times 10^{-34} \text { Joule s } \\ \mathrm{k}=\text { Boltzmann } \end{gathered}$	$\begin{gathered} I=q / t \quad I=\text { amperes, } q=\text { charge in coulombs, } \\ t=\text { time in seconds. } \end{gathered}$
$\mathrm{E}_{\mathrm{n}}=\frac{-2.178 \times 10^{-18}}{\mathrm{n}^{2}} \text { joule }$	$\begin{gathered} \text { constant }=1.38 \times 10^{-23} \text { joule } / \mathrm{K} \\ \text { Avogadro's number }=6.02 \times 10^{23} \\ \text { molecules } / \text { mole } \end{gathered}$	$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{\mathrm{RT} \ln \mathrm{Q}}{\mathrm{n} \mathfrak{I}}=\mathrm{E}_{\text {cell }}^{0}-\frac{0.0592 \log \mathrm{Q} @ 25^{\circ} \mathrm{C}}{\mathrm{n}}$
	coulomb	$\log \mathrm{K}=\frac{\mathrm{nE}}{} \mathrm{E}^{0}$
	1 electron volt/atom $=96.5 \times 10^{23} \mathrm{kj} / \mathrm{mole}$	1 Faraday $\mathfrak{I}=96,500$ coulombs $/$ mole

EQUILIBRIUM	EQUILIBIRUM
$\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$	TERMS
	$\mathrm{K}_{\mathrm{a}}=$ weak acid
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] ; \quad \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$	$\mathrm{K}_{\mathrm{b}}=\text { weak base }$ $\mathrm{K}_{\mathrm{w}}=\text { water }$
$\mathrm{pH}+\mathrm{pOH}=14$	$\mathrm{K}_{\mathrm{p}}=$ gas pressure
	$\mathrm{K}_{\mathrm{c}}=$ molar
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\mathrm{A}^{-1}\right]$	concentration
[HA]	
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \left[\mathrm{HB}^{+}\right]$	
[B]	
$\mathrm{pK} \mathrm{a}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}, \quad \mathrm{pK} \mathrm{K}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}$	
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$	
= moles product gas - moles reactant	

KINETICS EQUATIONS

$A_{o}-A=k t \mathrm{~A}_{0}$ is initial concentration, amount.

$$
\ln \frac{A_{o}}{A}=k t
$$

$$
\frac{1}{A}-\frac{1}{A_{o}}=k t
$$

$$
\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

THERMOCHEMISTRY	$\mathrm{S}^{0}=$ standard entropy $\mathrm{H}^{0}=$ standard enthalpy	Metal	eries
	$\mathrm{G}^{\mathrm{o}}=$ standard free energy	Metal	Metal Ion
$\Delta \mathrm{H}^{0}=\Sigma \Delta \mathrm{H}^{0}$ products $-\Sigma \Delta \mathrm{H}^{0}$ reactants	$\mathrm{E}^{0}=$ standard reduction potential	Li	Li^{+1}
$\Delta \mathrm{G}^{0}=\Sigma \Delta \mathrm{G}^{0}$ products $-\sum \Delta \mathrm{G}^{0}$ reactants	T = temperature	K	K^{+1}
$G^{\circ}=\Sigma \Delta G^{\circ}$ products - $\sum \Delta G^{\circ}$	$\mathrm{q}=\text { heat }$	Ba	Ba^{+2}
$\Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{S}^{0}$	$\mathrm{c}=$ specific heat capacity	Ca	Ca^{+2}
$\Delta \mathrm{G}^{0}=-\mathrm{RT} \ln \mathrm{K}=-2.303 \mathrm{RT} \log \mathrm{K}$		Na	Na^{+1}
	$\mathrm{C}_{\mathrm{p}}=$ molar heat capacity at constant pressure	Mg	Mg^{+2}
$\Delta \mathrm{G}^{0}=-\mathrm{nJ} \mathrm{E}^{0}$	1 faraday $\mathfrak{I}=96,500$	A1	Al^{+3}
$\Delta \mathrm{G}=\Delta \mathrm{G}^{0}+\mathrm{RT} \ln \mathrm{Q}=\Delta \mathrm{G}^{0}+2.303 \mathrm{RT} \log \mathrm{Q}$	coulombs/mole	Mn	Mn^{+2}
		Zn	Zn^{+2}
$\mathrm{q}=\mathrm{mC}$ C $\Delta \mathrm{T}$	$\mathrm{C}_{\text {water }}=\frac{4.18 \text { joule }}{\mathrm{g}}$	Cr	$\mathrm{Cr} \mathrm{r}^{+3}$
q m $\mathrm{C} \Delta \mathrm{T}$	Water $\mathrm{H}_{\mathrm{t}}=\underset{330^{2}}{\mathrm{~g} \mathrm{~K}}$	Fe	Fe^{+2}
$\mathrm{C}_{\mathrm{p}}=\Delta \mathrm{H}$	Water $\mathrm{H}_{\mathrm{f}}=\frac{330 \text { joules }}{\text { gram }}$	Co	Co^{+2}
$\frac{\Delta T}{\Delta T}$	Water $\mathrm{H}_{\mathrm{v}}=2260$ joules	Ni	$\mathrm{Ni}{ }^{+2}$
	gram	Sn	Sn^{+2}
$\mathrm{q}=\mathrm{mH}_{\mathrm{f}}$	$\Delta \mathrm{U}=$ change internal energy of	Pb	Pb^{+2}
	a system	H_{2}	$2 \mathrm{H}^{+1}$
$\mathrm{q}=\mathrm{mH}_{\mathrm{v}}$.	$\Delta \mathrm{H}=$ change in energy of a	Cu	Cu^{+2}
$\Delta \mathrm{U}=\Delta \mathrm{H}-\mathrm{P} \Delta \mathrm{V}$	system	Ag	Ag^{+1}
	$-\mathrm{P} \Delta \mathrm{V}=$ work of gases 1liter-atm $=101325 \mathrm{~J}$	Hg	Hg^{+2}
		Pt	Pt^{+2}
		Au	Au^{+3}

Chemistry II Answer Key Canary test
 Date: Feb 9, 2017 Corrections

1	B	$\mathbf{6}$	C	11	B	16	D	21	D
2	D	7	A	12	B	17	A	22	C
3	A	8	B	13	D	18	D-(C)	23	B
4	B	9	B	14	D	19	A	24	B
5	A	10	D	15	C	20	B (all full credit)	25	A

CHEMISTRY 11 SECOND YEAR AND AP LEVEL STUDENTS. 25 MULTIPLE CHOICE QUESTIONS PER EXAM. Chemistry Big Ideas:

1. The chemical elements are fundamental building materials of matter, and all matter can be understood in terms of arrangements of atoms. These atoms retain their identity in chemical reaction.
2. Chemical and physical properties of materials can be explained by the structure and the arrangement of atoms, ions, or molecules and the forces between them.
3. Changes in matter involve the rearrangement and /or reorganization of atoms and/or the transfer of electrons 4. Rates of chemical reactions are determined by details of the molecular collisions.
4. The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter.
5. Any bond or intermolecular attraction that can be formed can be broken. There two processes are in dynamic competition, sensitive to initial conditions and external perturbations.
JANUARY: matter and measurement, atomic theory (sub-atomic particles, atomic masses), spectroscopy (Beer's Law) chemical formulas, chemical equations (precipitation reactions, ionic equations, solubility, acid-base reactions, gas forming reactions, oxidation reduction reactions, balancing redox reactions by oxidation state method, activity series, mole relationships, mass-mass problems, stoichiometry of redox solutions, solutions stoichiometry, electronic structure and periodic table/periodicity.
FEBRUARY: chemical bonding, bond order (no molecular orbital theory), photon-electron spectroscopy, doping and semiconductors, paramagnetism, and diamagnetism, electronegativity, Lewis structures, molecular geometry, polarity of molecules, hybridization($\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$), intermolecular forces (van der Waals forces, relations between boiling point and vapor pressure), thermochemistry (enthalpy, Hess's Law, heats of formation, bond energies, calorimetry), phase changes (not PT diagrams), gases and gas laws, plus January topics.
MARCH: non-metals, metals (not unit cells), solutions, rates of reactions, reaction mechanisms, descriptive chemistry of the elements, plus Jan and Feb topics.
APRIL: chemical equilibrium, acids, bases, and salts (hydrolysis), K_{a}, K_{b}, buffers, solution equilibria, redox, voltaic cells, thermodynamics ($\Delta S, \Delta H$, and ΔG), descriptive chemistry of the elements, plus Jan, Feb., and Mar topics.

Dates for 2017 Season

Thursday January 12, 2017 Thursday February 9, 2017
Thursday March 9, 2017 Thursday April 13, 2017
All areas, schools must complete the April exam and mail in the results by April 28 ${ }^{\text {th }}, 2017$
New Jersey Science League
PO Box 65 Stewartsville, NJ 08886-0065
phone \# 908-213-8923 fax \# 908-213-9391 email: newjsl@ptd.net Web address: http://entnet.com/~personal/njscil/html/ What is to be mailed back to our office?
PLEASE RETURN THE AREA RECORD AND ALL TEAM MEMBER SCANTRONS (ALL STUDENTS PLACING $1^{\mathrm{ST}}, 2^{\mathrm{ND}}, 3^{\mathrm{RD}}$, AND 4^{TH}).
If you return scantrons of alternates, then label them as ALTERNATES.
Dates 2018 Season

Thursday January 11, 2018 Thursday February 8, 2018
Thursday March 8, 2018 Thursday April 12, 2018

New Jersey Science League Corrections

Chemistry II Exam March 9, 2017 Canary

Answer the following questions on the answer sheet provided. Each correct response is worth 4 points. Use the letters in parentheses for your answers. Choose the letter that best completes or answers the item. Be certain that erasures are complete. Please PRINT your name, school area code, and which test you are taking on the scantron.

1. Which of the following experimental mistakes will NOT introduce any error in the determination of the heat of neutralization of 50.0 mL of 0.10 M HCl and 50.0 mL of 0.10 M NaOH solutions?
I. Using a thermometer which is calibrated, but reading $1.0^{\circ} \mathrm{C}$ for melting point of ice.
II. Using the same graduated cylinder for the acid and the base.
III. Neglecting the heat capacity of the calorimeter.
A. Only I
B. Only II
C. II and III
D. I and III
2. Which one of the following figures below bests represents the reaction between 50.0 mL of each $\mathrm{K}_{2} \mathrm{SO}_{4}$ and AgNO_{3} equimolar solutions?

3. Which of the following elements can be found in nature in its elemental state?
A. Na
B. Tc
C. Mg
D. Au
4. Which is of the following statements is NOT correct for semiconductor materials?
A. Group 15 elements are used as dopants to produce n-type semiconductors, because they have one more electron than the original Group 14 elements.
B. Group 13 elements are used as dopants to produce p-type semiconductors, because they have one less electron than the original Group 14 elements.
C. Band gap structure explains why semiconductors have different electric properties than the metals.
D. the conductivity in pure semiconductors increases as temperature goes down.
5. The rate of decomposition of A is $0.015 \mathrm{~mol} / \mathrm{L} \times \mathrm{s}$. What is the rate of appearance of B ?

$$
3 \mathrm{~A}(\mathrm{~g})+\mathrm{C}(\mathrm{~g}) \rightarrow 2 \mathrm{~B}(\mathrm{~g})
$$

A. $0.030 \mathrm{~mol} / \mathrm{L} \times \mathrm{s}$
B. $0.0075 \mathrm{~mol} / \mathrm{L} \times \mathrm{s}$
C. $0.050 \mathrm{~mol} / \mathrm{L} \times \mathrm{s}$
D. $0.010 \mathrm{~mol} / \mathrm{L} \times \mathrm{s}$
6. A compound decomposes by a first-order process. If 87.5% of the compound decomposes in 20.0 minutes, the half-life of the compound is \qquad .
A) 5.00 minutes
B) 6.65 minutes
C) 7.50 minutes
D) 10.00 minutes
7. Calculate the value of ΔH^{0}, in kJ , for the following reaction using the listed thermochemical equations:

\[

\]

A. -800 kJ
B. +400 kJ
C. +800 kJ
D. -1600 kJ
8. Which cation binds to the water molecules the strongest?
A. Cu^{2+}
B. Li^{+}
C. Na^{+}
D. Zn^{2+}
9. Which of the following processes is endothermic?
A. $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s})$
B. $\mathrm{Ca}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{liq}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{H}_{2}$ (gas)
C. $\mathrm{I}_{2}(\mathrm{~s}) \rightarrow \mathrm{I}_{2}(\mathrm{~g})$
D. $\mathrm{K}(g)+1 / 2 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{KCl}(s)$
10. Two gases are interacting thermally through a very thin barrier shown in the figure below. The rigid container is insulated. Which of the following statements is(are) correct?

I. Heat is the energy transferred via collisions between the warmer atoms on one side and cooler atoms on the other.
II. Thermal equilibrium occurs when the systems have the same average transitional kinetic energy and thus the same temperature.
A. Only I
B. Only II
C. I and II
D. Neither I nor II
11. A sample of 0.97 -gram sample of ZnS is reacted with 6.0 grams of oxygen and 1.2 grams of carbon according to equation:

$$
2 \mathrm{ZnS}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{C}(\mathrm{~s}) \rightarrow 2 \mathrm{Zn}(\mathrm{~s})+2 \mathrm{CO}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

What is the mass of solid remained after the reaction? All full credit. No correct answer.
A. 0.65 g
B. 1.3 g
C. 6.5 g
D. 3.8 g
12. Based on the following data given below, determine the overall order of the reaction between the ferric and iodide ions.

$\left.\mathbf{F e}^{\mathbf{3 +}} \mathbf{(0 . 1 0} \mathbf{M}\right)$	$\left.\mathbf{I}^{\boldsymbol{-}} \mathbf{(0 . 1 0} \mathbf{M}\right)$	Starch (2\%)	DI Water	time (seconds)
4.0 mL	4.0 mL	1 mL	11 mL	22
2.0 mL	4.0 mL	1 mL	13 mL	89
1.0 mL	4.0 mL	1 mL	14 mL	357
4.0 mL	2.0 mL	1 mL	13 mL	43

A. 4
B. 3
C. 2
D. 1
13. Which of the following equations correctly represents the net ionic reaction between aqueous solutions of potassium oxalate and iron(III) chloride?
A. $\mathrm{Fe}^{+2}(a q)+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-2}(a q) \rightarrow \mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(s)$
B. $2 \mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}(s)$
C. $\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{3-}(\mathrm{aq}) \rightarrow \mathrm{FeC}_{2} \mathrm{O}_{4}(\mathrm{~s})$
D. $2 \mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{Fe}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}(\mathrm{~s})$
14. Which of the following has the highest melting point?
A. NaCl
B. MgO
C. CaO
D. KCl
15. The complete combustion of 24 mg of a compound containing C, H, and O only, gave 35.2 mg of CO_{2} and 14.4 mg of $\mathrm{H}_{2} \mathrm{O}$. What is the molecular formula of this compound?
A. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
B. $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$
C. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
D. $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{3}$
16. What is the hybridization of the central atom in triiodide ion, $\mathrm{BF}_{4}{ }^{-}$? All full credit. Key has B
A. $s p^{2}$
B. $s p^{3}$
C. $s p$
D. $s^{3} p$
17. Given the following bond energies, calculate the molar heat of combustion of acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$, in $\mathrm{kJ} / \mathrm{mol}$?
A. -998
B. +1384
C. -1384
D. +2645

Bond Dissociation Enthal pies $(\mathrm{kJ} / \mathrm{mol})$	
$\mathrm{C}-\mathrm{H}$	413
$\mathrm{C}=\mathrm{O}$	745
$\mathrm{C}=\mathrm{C}$	610
$\mathrm{C} \equiv \mathrm{C}$	837
$\mathrm{O}=\mathrm{O}$	498
$\mathrm{H}-\mathrm{O}$	463
$\mathrm{C}-\mathrm{C}$	346

18. Which substance has the strongest forces of attraction between its molecules in their liquid state?
A. $\mathrm{H}_{2} \mathrm{~S}$
B. SO_{3}
C. SF_{6}
D. $\mathrm{S}_{2} \mathrm{~F}_{10}$
19. Which of the following species is planar?
A. $\mathrm{NH}_{4}{ }^{+}$
B. $\mathrm{ClO}_{3}{ }^{-}$
C. $\mathrm{CO}_{3}{ }^{2-}$
D. $\mathrm{SO}_{3}{ }^{2-}$
20. $\mathrm{H}^{+}(a q)+\mathrm{Mn}^{2+}(a q)+\mathrm{NaBiO}_{3}(s) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{MnO}_{4}^{-}(a q)+\mathrm{Bi}^{3+}(a q)+\mathrm{Na}^{+}(a q)$ Balance the above reaction using the smallest-whole number coefficients. When balanced what is the coefficient of H^{+}?
A. 8
B. 10
C. 12
D. 14
21. When the element with electron configuration $1 s^{2} 2 s^{2} 2 p^{4}$ combines with another element of electron configuration $1 s^{2} 2 s^{2} 2 p^{5}$, what is the molecular shape of the molecule according to the VSEPR theory?
A. Tetrahedral
B. Bent
C. trigonal pyramidal
D. trigonal planar
22. Which concentration value of a solution varies the most with a change in temperature?
A. Mass Percent
B. Molarity
C. Mol fraction
D. All of these
23. A sample of 1.04 grams of BaCl_{2} dissolved in enough water and titrated with an excess of AgNO_{3} solution. The precipitate is washed and dried, and weighs 1.11 grams. What is the percent yield of the reaction?
A. 19.3\%
B. 38.7%
C. 77.4%
D. 85.0%
24. For a particular reaction the activation energy is $+150 \mathrm{~kJ} / \mathrm{mol}$ and the activation energy of the reverse reaction is $+230 \mathrm{~kJ} / \mathrm{mol}$. What is the value of the enthalpy change, ΔH, for the forward reaction?
A. $-80 \mathrm{~kJ} / \mathrm{mol}$
B. $+230 \mathrm{~kJ} / \mathrm{mol}$
C. $+80 \mathrm{~kJ} / \mathrm{mol}$
D. $+380 \mathrm{~kJ} / \mathrm{mol}$
25. Consider these two gases under the given physical conditions.

Which of the following statements is correct?
A. The number of moles of O_{2} is smaller than that of N_{2}.
B. The average speed of O_{2} molecules is higher than the average speed of the N_{2} molecules.
C. The average kinetic energy of the N_{2} molecules are equal to the average kinetic energy of the O_{2} molecules.
D. The mass of the O_{2} present in the first container is equal to the mass of the N_{2} present in the second container.

Chemistry II Answer Key Canary test Corrections Chemistry II March 9, 2017 Answer Key

1. A	6. B	11. A (all full credit)	16. B (all full credit)	21. B
2. C	7. B	12. B	17. A	22. B
3.D	8. A	13.D	18. D	23. C
4.D	9. C	14. B	19. C	24. A
5. D	10. C	15. A	20.D	25.C

CHEMISTRY 11 FOR ALL SECOND YEAR AND AP LEVEL STUDENTS. 25 MULTIPLE CHOICE QUESTIONS PER EXAM.
JANUARY: matter and measurement, atomic theory (sub-atomic particles, atomic masses), spectroscopy (Beer’s Law) chemical formulas, chemical equations (precipitation reactions, ionic equations, solubility, acid-base reactions, gas forming reactions, oxidation reduction reactions, balancing redox reactions by oxidation state method, activity series, mole relationships, mass-mass problems, stoichiometry of redox solutions, solutions stoichiometry, electronic structure and periodic table/periodicity.
FEBRUARY: chemical bonding, bond order (no molecular orbital theory), photon-electron spectroscopy, doping and semiconductors, paramagnetism, and diamagnetism, electronegativity, Lewis structures, molecular geometry, polarity of molecules, hybridization($\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$), intermolecular forces (van der Waals forces, relations between boiling point and vapor pressure), thermochemistry (enthalpy, Hess's Law, heats of formation, bond energies, calorimetry), phase changes (not PT diagrams), gases and gas laws, plus January topics.
MARCH: non-metals, metals (not unit cells), solutions, rates of reactions, reaction mechanisms, descriptive chemistry of the elements, plus Jan and Feb topics.
APRIL: chemical equilibrium, acids, bases, and salts (hydrolysis), $\mathrm{K}_{\mathrm{a}}, \mathrm{K}_{\mathrm{b}}$, buffers, solution equilibria, redox, voltaic cells, thermodynamics $(\Delta S, \Delta H$, and $\Delta G)$, descriptive chemistry of the elements, plus Jan, Feb., and Mar topics.

Dates for 2017 Season
Thursday March 9, 2017 Thursday April 13, 2017
All areas, schools must complete the April exam and mail in the results by April 28 ${ }^{\text {th }}, 2017$
New Jersey Science League
PO Box 65 Stewartsville, NJ 08886-0065
phone \# 908-213-8923 fax \# 908-213-9391 email: newjsl@ptd.net
Web address: http://entnet.com/~personal/njscil/html/
What is to be mailed back to our office?
PLEASE RETURN THE AREA RECORD AND ALL TEAM MEMBER SCANTRONS (ALL
STUDENTS PLACING $1^{\mathrm{ST}}, 2^{\mathrm{ND}}, 3^{\mathrm{RD}}$, AND 4^{TH}).
If you return scantrons of alternates, then label them as ALTERNATES.
Dates 2018 Season
Thursday January 11, 2018 Thursday February 8, 2018
Thursday March 8, 2018 Thursday April 12, 2018

New Jersey Science League Canary Color Corrections
 Chemistry II Exam April 2017

Answer the following questions on the answer sheet provided. Each correct response is worth 4 points. Use the letters in parentheses for your answers. Choose the letter that best completes or answers the item. Be certain that erasures are complete. Please PRINT your name, school area code, and which test you are taking on the scantron.

1. Which is the best analytical method in separating two water soluble food coloring compounds having different polarities?
A. Column chromatography
C. Fractional distillation
B. Gas chromatography
D. Evaporation
2. Which of the solution will form a buffer upon mixing?
A. $10 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{HF}+10 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{NaOH}$
B. $10 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$
C. $10 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{HCl}+10 \mathrm{ml} 0.10 \mathrm{M} \mathrm{NaCl}$
D. $20 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+15.0 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{NaOH}$
3. At $500 \mathrm{~K}, 1 \mathrm{~mol}$ of $\mathrm{Q}, 1 \mathrm{~mol}$ of $\mathrm{R}, 1 \mathrm{~mol}$ of T , and 1 mol of Z are introduced into a 1 -liter rigid container. At this temperature, the equilibrium constant is 4.9×10^{3} for

$$
2 \mathrm{Q}(g)+\mathrm{R}(g) \leftrightarrows 2 \mathrm{~T}(g)+\mathrm{Z}(g)
$$

Which of the following species has the lowest concentration when equilibrium is established at 500 K ?
A. Q
B. R
C. T
D. Z
4. Which of the following changes will NOT make the reaction between a sample of solid calcium carbonate and binary acid faster?
A. Use powdered calcium carbonate sample.
B. Use 50.0 mL 0.10 M HF instead of 50.0 mL 0.10 M HCl .
C. Use 50.0 mL 1.0 M HCl solution instead of 50.0 mL 0.10 M HCl .
D. Use 25.0 mL of 0.10 M HCl at $50^{\circ} \mathrm{C}$ instead of 25.0 mL of 0.10 M HCl at room temperature.
5. Which solution has the best buffering capacity?
A. $10 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{HF}+10 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{NaF}$
B. $100 \mathrm{~mL} 0.010 \mathrm{M} \mathrm{HF}+100 \mathrm{~mL} 0.010 \mathrm{M} \mathrm{NaF}$
C. $10 \mathrm{~mL} 1.00 \mathrm{M} \mathrm{HF}+10 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{NaF}$
D. $10 \mathrm{~mL} 1.00 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+5 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$
6. Which types of compounds Mendeleyev experienced with when he studied the arrangement of the elements according to their increasing atomic masses? Should be experimented with. Ans remains the same.
A. oxalates
B. oxides
C. thiocyanates
D. chlorates
7. How many grams of ice at $-8.5^{\circ} \mathrm{C}$ is needed to cool 50.0 grams of water from $40.0^{\circ} \mathrm{C}$ to $30.0^{\circ} \mathrm{C} . \mathrm{C}_{\text {ice }}=2.0 \mathrm{~J} . \mathrm{g}^{-1} .{ }^{\circ} \mathrm{C}^{-1} ; \mathrm{C}_{\text {water }}=4.2{\mathrm{~J} . \mathrm{g}^{-1}}{ }^{\circ} \mathrm{C}^{-1} ; \Delta H_{\text {fusion }}=333 \mathrm{~J} . \mathrm{g}^{-1}$.
A. 12 g
B. 6.0 g
C. 18 g
D. 4.4 g
8. The reaction between $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} is represented by the equation below.

$$
\mathrm{SO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{~S}(g) \leftrightarrows 3 \mathrm{~S}(s)+2 \mathrm{H}_{2} \mathrm{O}(g)
$$

The initial pressures of SO_{2} and $\mathrm{H}_{2} \mathrm{~S}$ are both equal to 1 atm . The vapor pressure of $\mathrm{H}_{2} \mathrm{O}$ is 30 . mmHg at 300 K . Determine the value of the equilibrium constant, if the equilibrium total pressure of the system is 870 mmHg at 300 K . Ans is 1.8×10^{-5}. All full credit.
A. 1.9×10^{-5}
B. 1.9×10^{5}
C. 0.28
D. 2.8
9.

Lattice enthalpies of sodium halides

Lattice enthalpies of Group 1 chlorides

Based on the above graphs, it can be deduced that:
A. The lattice energies of the alkali chlorides increase with the increasing size of the alkali cations.
B. The lattice energies of sodium halides increase with the increasing size of the halide anion.
C. The lattice energy of NaF is smaller than that of the NaI
D. The lattice energy of KI is less than $700 \mathrm{~kJ} / \mathrm{mol}$.
10. What are the electrolysis products of an aqueous solution of $\mathrm{Li}_{2} \mathrm{SO}_{4}$?
A. Solid lithium at the anode and sulfur dioxide gas at the cathode
B. Solid lithium at the cathode and oxygen gas at the anode
C. Hydrogen gas at the cathode and oxygen gas at the anode
D. Hydrogen gas at the anode and oxygen gas at the cathode
11. 0.039 gram of $\mathrm{Ca}(\mathrm{OH})_{2}$ is dissolved completely in distilled water to make 1.0-liter solution. What is the pH of the solution?
A. 3.00
B. 3.30
C. 10.70
D. 11.02
12. What is the solubility(Molarity) of $\mathrm{Al}(\mathrm{OH})_{3}$ in pure water? $\quad K_{\text {sp }}=5.4 \times 10^{-38}$
A. 4.8×10^{-10}
B. 2.1×10^{-10}
C. 1.6×10^{-19}
D. 1.6×10^{-10}
13. BaSO_{4} is the most soluble in which of the following solutions?
A. $0.010 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
B. $0.010 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$
C. $0.010 \mathrm{M} \mathrm{NaHSO}_{4}$
D. $0.010 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$
14. Of the elements 1to18, how many of them have two unpaired electrons?
A. 2
B. 4
C. 6
D. 8
15. Valine, an amino acid, exits in different molecular forms at different pHs . They are represented by the following equation. The pKa values of valine's acidic and basic groups are 2.26 and 9.62 , respectively.

Which form is the major species present at $\mathrm{pH}=4.0$?
A. Only 1
B. Only 2
C. Only 3
D. Only 1 and 2
16. Which of the following acidic solutions will require the least volume to neutralize 25 mL 0.10 M NaOH solution?
A. 0.10 M HCl
B. 0.10 M HF
C. $0.20 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
D. $0.20 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
17. Which of the following choices is needed to increase the life of a galvanic cell?
A. A larger anode
B. A larger cathode
C. Highly concentrated anodic compartment solution
D. Less concentrated cathodic compartment solution
18. The addition of a catalyst will have which of the following effects on a chemical reaction?
I. The enthalpy change will decrease
II. The entropy change will decrease
III. the activation energy will decrease.
A. I only
B. II only
C. III only
D. I, II, and III
19. The rate law of a chemical reaction is Rate $=k[\mathrm{~A}]^{3}[\mathrm{~B}]^{2}$. What is the unit of the rate constant?
A. $\mathrm{mol}^{4} \times \mathrm{L}^{-4} \times \mathrm{s}^{4}$
B. $\mathrm{mol}^{-4} \times \mathrm{L}^{-4} \times \mathrm{s}^{-1}$
C. $\mathrm{mol}^{4} \times \mathrm{L}^{-4} \times \mathrm{s}^{-1}$
D. $\mathrm{mol}^{-4} \times \mathrm{L}^{4} \times \mathrm{s}^{-1}$
20. The equation for the endothermic reaction in the figure is $\mathrm{A}_{2}(g)+\mathrm{B}_{2}(g) \leftrightarrows 2 \mathrm{AB}(g)$.

At time 2 min, what change was imposed?
A. The pressure was increased.
B. The temperature was increased.
C. A_{2} gas was added to the system at equilibrium.
D. B_{2} gas was added to the system at equilibrium.

21. Consider the following reaction:

$$
2 \mathrm{Al}(s)+3 \mathrm{Cu}^{2+}(a q) \rightarrow 3 \mathrm{Cu}(s)+2 \mathrm{Al}^{3+}(a q)
$$

The reduction potentials are given: $\mathrm{E}^{0}{ }_{\mathrm{Cu}}{ }^{2+} / \mathrm{Cu}=+0.36 \mathrm{~V}$ and $\mathrm{E}^{\mathrm{o}}{ }_{\mathrm{Al}}{ }^{3+} /{ }_{/ \mathrm{Al}}=-1.66 \mathrm{~V}$. Which of the following statements is correct?
A. The standard cell potential is -1.30 V .
B. Cu is the anode.
C. When calculating the standard cell potential, the coefficients are not taken into account.
D. At equilibrium, the cell voltage is +1.30 V .
22. The compound A partially decomposes according to the following equilibrium:

$$
2 \mathrm{~A}(g) \leftrightarrows \mathrm{B}(g)
$$

A 10.00-L flask is charged with 0.250 mol of A . When equilibrium is reached at $1000 \mathrm{~K}, 0.0250$ mol of A remains. What is the value of the equilibrium constant for this reaction?
A. 1.80×10^{2}
B. 1.80×10^{-2}
C. 1.80×10^{3}
D. 18.0
23. Which of the following is the strongest acid?
A. HClO
B. HIO_{2}
C. HBrO_{3}
D. HCN
24. Which of the following conjugate bases is the strongest in aqueous solutions at $25^{\circ} \mathrm{C}$?
A. CN^{-} $\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{HCN}=9.4$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$ $\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=25$
C. OH^{-}
$\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{H}_{2} \mathrm{O}=15.7$
D. F^{-}
$\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{HF}=4.0$
25. Consider the system in equilibrium $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-198 \mathrm{~kJ}$

Which of the following changes will increase the quantity of SO_{3} ?
A. Introducing a catalyst
B. Increasing the pressure of the system
C. Increasing the temperature of the system
D. Adding He to the system

Periodic Table and Chemistry Formulae Final copy 2-17-2017

$\begin{array}{\|c} \hline 58 \\ \mathrm{Ce} \\ 140.1 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 59 \\ \mathrm{Pr} \\ 140.9 \\ \hline \end{array}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 144.2 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 61 \\ \text { Pm } \\ (145) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 62 \\ \text { Sm } \\ 150.4 \\ \hline \end{array}$	$\begin{gathered} 63 \\ \text { Eu } \\ 152.0 \\ \hline \end{gathered}$	$\begin{array}{\|c} 64 \\ \text { Gd } \\ 157.3 \\ \hline \end{array}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \\ 158.9 \\ \hline \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 67 \\ \mathrm{Ho} \\ 164.9 \\ \hline \end{array}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.3 \\ \hline \end{gathered}$	$\begin{gathered} 69 \\ \mathrm{Tm}_{168.9} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 70 \\ \mathbf{Y b} \\ 173.0 \\ \hline \end{array}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ \text { Lu5.0 } \\ \hline \end{gathered}$	Lanthanide Series
$\begin{array}{\|l} \hline 90 \\ \text { Th } \\ 232.0 \\ \hline \end{array}$	$\begin{gathered} 91 \\ \mathrm{~Pa} \\ 231.0 \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.0 \end{gathered}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \\ & (237) \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \\ & (244) \end{aligned}$	$\begin{aligned} & 95 \\ & \text { Am } \\ & (243) \end{aligned}$	$\begin{aligned} & 96 \\ & \mathrm{Cm} \\ & (247 \end{aligned}$	97 Bk (247)	$\begin{aligned} & 98 \\ & \text { Cf } \\ & (251) \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \\ & (252) \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & \text { Fm } \\ & (257) \end{aligned}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \\ & (258) \\ & \hline \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \\ & (259) \end{aligned}$	$\begin{aligned} & 103 \\ & \mathbf{L r} \\ & (262) \end{aligned}$	Actinide Series

CHEMISTRY FORMULAS

GASES, LIQUIDS, SOLUTIONS $\mathrm{PV}=\mathrm{nRT}$	$\mathrm{d}=\mathrm{m}$	P = pressure	R, Gas constant $=8.31$ Joules
	V	$\mathrm{V}=$ volume	Mole Kelvin
	$3 \mathrm{kt} \quad 3 \mathrm{RT}$	$\mathrm{T}=$ Temperature	$=0.0821$ liter atm
	$\mathrm{u}_{\mathrm{ms}}=\sqrt{\frac{3 k t}{}}=\sqrt{\frac{3 R T}{M}}$	$\mathrm{n}=$ number of moles	mole Kelvin
$\frac{\left(P+n^{2} a\right)(V-n b)}{V^{2}}=n R T$	$\mathrm{u}_{\mathrm{ms}} \sqrt{m} \sqrt{M}$	d = density	$=8.31$ volts coulombs
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {total }} \bullet \mathrm{X}_{\mathrm{A}}$	$\mathrm{KE}_{\text {per molecule }}=\frac{\mathrm{mv}^{2}}{2}$	$\mathrm{v}=$ velocity	Boltzmann's constant,
		where $\mathrm{X}_{\mathrm{A}}=\underline{\text { moles A }}$	$\mathrm{k}=1.38 \times 10^{-23}$ Joule
$\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+$	$\mathrm{KE}_{\text {per mole }}=\underline{3 R T}$	total moles	K
	$\mathrm{KE}_{\text {per mole }}=\frac{3 \mathrm{KI}}{2}$	$\mathrm{u}_{\text {mms }}=$ root-mean-square-root	$\mathrm{K}_{\text {f water }}=1.86 \mathrm{Kelvin} / \mathrm{molal}$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{m}}$		KE = Kinetic energy	$\mathrm{K}_{\mathrm{b} \text { water }}=0.512 \mathrm{Kelvin} / \mathrm{molal}$
		$\mathrm{r}=$ rate of effusion	
Kelvin $={ }^{\circ} \mathrm{C}+273$	$\frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}$	M = Molar mass	$\begin{gathered} \mathrm{STP}=0.00^{\circ} \mathrm{C}, 1.00 \mathrm{~atm}(101.3 \mathrm{kPa}=760 \\ \mathrm{mm} \text { of } \mathrm{Hg}=760 \mathrm{Torr}) \end{gathered}$
	$r_{2} \sqrt{M_{1}}$	$\pi=$ osmotic pressure	$=14.7 \mathrm{psi}$
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$	M , molarity = moles solute	i = van't Hoff factor K_{f} = molal freezing point	
	liter of solution	constant	1 faraday $\mathfrak{J}=96,500$ coulombs $/$ mole of
$\frac{V_{1}}{\mathrm{~V}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$		$\mathrm{K}_{\mathrm{b}}=$ molal boiling point	${ }^{\circ} \mathrm{C} \times 9 / 5+32={ }^{\circ} \mathrm{F}$
$\underline{\underline{P}}_{1} \underline{\mathrm{~V}}_{1} \mathrm{~V}_{1}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \underline{\mathrm{~V}_{2}}$		$\mathrm{Q}=$ reaction quotient	$\left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9={ }^{\circ} \mathrm{C}$
		$\mathrm{I}=$ current in amperes	
$\mathrm{T}_{1} \quad \frac{\mathrm{~T}_{2}}{}$		$\mathrm{q}=$ charge in coulombs	
		$\mathrm{t}=$ time	
		$\mathrm{E}^{0}=$ standard reduction	
		potential	
		Keq = equilibrium constant	

ATOMIC STRUCTURE	$\mathrm{E}=$ energy	OXIDATION-REDUCTION
$\Delta \mathrm{E}=\mathrm{h} v$	$v=$ frequency	ELECTROCHEMISTRY
$\mathrm{c}=\mathrm{v} \lambda$	$\lambda=$ wavelength	
	$\mathrm{p}=$ momentum	$\mathrm{Q}=[\mathrm{C}]^{\mathrm{C}}[\mathrm{D}]^{\mathrm{d}}$
$\lambda=\underline{h}$	$\mathrm{v}=$ velocity	[A] ${ }^{\text {a }}$ B] ${ }^{\text {b }}$
m v	$\mathrm{n}=$ principal quantum number	where $\mathrm{a} \mathrm{B}+\mathrm{bB} \leftrightarrow \mathrm{cC}+\mathrm{dD}$
	$\mathrm{c}=$ speed of light $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	
$\mathrm{p}=\mathrm{mv}$	$\begin{gathered} \mathrm{h}=\text { Planck's constant }=6.63 \times 10^{-34} \text { Joule s } \\ \mathrm{k}=\text { Boltzmann } \end{gathered}$	$\begin{gathered} I=q / t \quad I=\text { amperes, } q=\text { charge in coulombs, } \\ t=\text { time in seconds. } \end{gathered}$
$\mathrm{E}_{\mathrm{n}}=\frac{-2.178 \times 10^{-18}}{\mathrm{n}^{2}} \text { joule }$	$\begin{gathered} \text { constant }=1.38 \times 10^{-23} \text { joule } / \mathrm{K} \\ \text { Avogadro's number }=6.02 \times 10^{23} \\ \text { molecules } / \text { mole } \end{gathered}$	$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{\mathrm{RT} \ln \mathrm{Q}}{\mathrm{n} \mathfrak{I}}=\mathrm{E}_{\text {cell }}^{0}-\frac{0.0592 \log \mathrm{Q} @ 25^{\circ} \mathrm{C}}{\mathrm{n}}$
	coulomb	$\log \mathrm{K}=\frac{\mathrm{nE}}{} \mathrm{E}^{0}$
	1 electron volt/atom $=96.5 \times 10^{23} \mathrm{kj} / \mathrm{mole}$	1 Faraday $\mathfrak{I}=96,500$ coulombs $/$ mole

EQUILIBRIUM	EQUILIBIRUM
$\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$	TERMS
	$\mathrm{K}_{\mathrm{a}}=$ weak acid
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] ; \quad \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$	$\mathrm{K}_{\mathrm{b}}=\text { weak base }$ $\mathrm{K}_{\mathrm{w}}=\text { water }$
$\mathrm{pH}+\mathrm{pOH}=14$	$\mathrm{K}_{\mathrm{p}}=$ gas pressure
	$\mathrm{K}_{\mathrm{c}}=$ molar
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\mathrm{A}^{-1}\right]$	concentration
[HA]	
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \left[\mathrm{HB}^{+}\right]$	
[B]	
$\mathrm{pK} \mathrm{a}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}, \quad \mathrm{pK} \mathrm{K}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}$	
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$	
= moles product gas - moles reactant	

KINETICS EQUATIONS

$A_{o}-A=k t \mathrm{~A}_{0}$ is initial concentration, amount.

$$
\ln \frac{A_{o}}{A}=k t
$$

$$
\frac{1}{A}-\frac{1}{A_{o}}=k t
$$

$$
\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

THERMOCHEMISTRY	$\mathrm{S}^{0}=$ standard entropy $\mathrm{H}^{0}=$ standard enthalpy	Metal	eries
	$\mathrm{G}^{\mathrm{o}}=$ standard free energy	Metal	Metal Ion
$\Delta \mathrm{H}^{0}=\Sigma \Delta \mathrm{H}^{0}$ products $-\Sigma \Delta \mathrm{H}^{0}$ reactants	$\mathrm{E}^{0}=$ standard reduction potential	Li	Li^{+1}
$\Delta \mathrm{G}^{0}=\Sigma \Delta \mathrm{G}^{0}$ products $-\sum \Delta \mathrm{G}^{0}$ reactants	T = temperature	K	K^{+1}
$G^{\circ}=\Sigma \Delta G^{\circ}$ products - $\sum \Delta G^{\circ}$	$\mathrm{q}=\text { heat }$	Ba	Ba^{+2}
$\Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{S}^{0}$	$\mathrm{c}=$ specific heat capacity	Ca	Ca^{+2}
$\Delta \mathrm{G}^{0}=-\mathrm{RT} \ln \mathrm{K}=-2.303 \mathrm{RT} \log \mathrm{K}$		Na	Na^{+1}
	$\mathrm{C}_{\mathrm{p}}=$ molar heat capacity at constant pressure	Mg	Mg^{+2}
$\Delta \mathrm{G}^{0}=-\mathrm{nJ} \mathrm{E}^{0}$	1 faraday $\mathfrak{I}=96,500$	A1	Al^{+3}
$\Delta \mathrm{G}=\Delta \mathrm{G}^{0}+\mathrm{RT} \ln \mathrm{Q}=\Delta \mathrm{G}^{0}+2.303 \mathrm{RT} \log \mathrm{Q}$	coulombs/mole	Mn	Mn^{+2}
		Zn	Zn^{+2}
$\mathrm{q}=\mathrm{mC}$ C $\Delta \mathrm{T}$	$\mathrm{C}_{\text {water }}=\frac{4.18 \text { joule }}{\mathrm{g}}$	Cr	$\mathrm{Cr} \mathrm{r}^{+3}$
q m $\mathrm{C} \Delta \mathrm{T}$	Water $\mathrm{H}_{\mathrm{t}}=\underset{330^{2}}{\mathrm{~g} \mathrm{~K}}$	Fe	Fe^{+2}
$\mathrm{C}_{\mathrm{p}}=\Delta \mathrm{H}$	Water $\mathrm{H}_{\mathrm{f}}=\frac{330 \text { joules }}{\text { gram }}$	Co	Co^{+2}
$\frac{\Delta T}{\Delta T}$	Water $\mathrm{H}_{\mathrm{v}}=2260$ joules	Ni	$\mathrm{Ni}{ }^{+2}$
	gram	Sn	Sn^{+2}
$\mathrm{q}=\mathrm{mH}_{\mathrm{f}}$	$\Delta \mathrm{U}=$ change internal energy of	Pb	Pb^{+2}
	a system	H_{2}	$2 \mathrm{H}^{+1}$
$\mathrm{q}=\mathrm{mH}_{\mathrm{v}}$.	$\Delta \mathrm{H}=$ change in energy of a	Cu	Cu^{+2}
$\Delta \mathrm{U}=\Delta \mathrm{H}-\mathrm{P} \Delta \mathrm{V}$	system	Ag	Ag^{+1}
	$-\mathrm{P} \Delta \mathrm{V}=$ work of gases 1liter-atm $=101325 \mathrm{~J}$	Hg	Hg^{+2}
		Pt	Pt^{+2}
		Au	Au^{+3}

Chemistry II Answer Key Canary test Corrections Chemistry II April 2017 Answer Key

1.	A	6.	B	11.	D	16.	D	21.	C
2.	D	7.	D	12.	B	17.	A	22.	C
3.	A	8.	A(all full credit)	13.	C	18.	C	23.	C
4.	B	9.	D	14.	B	19.	D	24.	B
5.	C	10.	C	15.	B	20.	D	25.	B

CHEMISTRY 11 FOR ALL SECOND YEAR AND AP LEVEL STUDENTS. 25 MULTIPLE CHOICE QUESTIONS PER EXAM.
JANUARY: matter and measurement, atomic theory (sub-atomic particles, atomic masses), spectroscopy (Beer’s Law) chemical formulas, chemical equations (precipitation reactions, ionic equations, solubility, acid-base reactions, gas forming reactions, oxidation reduction reactions, balancing redox reactions by oxidation state method, activity series, mole relationships, mass-mass problems, stoichiometry of redox solutions, solutions stoichiometry, electronic structure and periodic table/periodicity.
FEBRUARY: chemical bonding, bond order (no molecular orbital theory), photon-electron spectroscopy, doping and semiconductors, paramagnetism, and diamagnetism, electronegativity, Lewis structures, molecular geometry, polarity of molecules, hybridization(sp, $\mathrm{sp}^{2}, \mathrm{sp}^{3}$), intermolecular forces (van der Waals forces, relations between boiling point and vapor pressure), thermochemistry (enthalpy, Hess's Law, heats of formation, bond energies, calorimetry), phase changes (not PT diagrams), gases and gas laws, plus January topics.
MARCH: non-metals, metals (not unit cells), solutions, rates of reactions, reaction mechanisms, descriptive chemistry of the elements, plus Jan and Feb topics.
APRIL: chemical equilibrium, acids, bases, and salts (hydrolysis), $\mathrm{K}_{\mathrm{a}}, \mathrm{K}_{\mathrm{b}}$, buffers, solution equilibria, redox, voltaic cells, thermodynamics $(\Delta S, \Delta H$, and $\Delta G)$, descriptive chemistry of the elements, plus Jan, Feb., and Mar topics.

Dates for 2017 Season
Thursday March 9, 2017 Thursday April 13, 2017
All areas, schools must complete the April exam and mail in the results by April 28 ${ }^{\text {th }}, 2017$
New Jersey Science League
PO Box 65 Stewartsville, NJ 08886-0065
phone \# 908-213-8923 fax \# 908-213-9391 email: newjsl@ptd.net
Web address: http://entnet.com/~personal/njscil/html/
What is to be mailed back to our office?
PLEASE RETURN THE AREA RECORD AND ALL TEAM MEMBER SCANTRONS (ALL
STUDENTS PLACING $1^{\mathrm{ST}}, 2^{\mathrm{ND}}, 3^{\mathrm{RD}}$, AND 4^{TH}).
If you return scantrons of alternates, then label them as ALTERNATES.
Dates 2018 Season
Thursday January 11, 2018 Thursday February 8, 2018
Thursday March 8, 2018 Thursday April 12, 2018

