New Jersey Science League - Chemistry I Exam
 January 2017 PINK TEST Corrections \#19

Choose the answer that best completes the statement or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheets is a table of the activity series of the elements. Please PRINT your name, school, area and which test you are taking on to the scan-tron.

1. A titration was performed to find the concentration (molarity) of barium hydroxide with the following results:

Trial	Molarity
1	$1.32+/-0.01$
2	$1.33+/-0.01$
3	$1.31+/-0.01$

The actual concentration of barium hydroxide was determined to be 1.000 Molar; the results of the titration are:
A. both accurate and precise
B. accurate but imprecise
C. precise but inaccurate
D. both inaccurate and imprecise
E. accuracy and precision are impossible to determine with the available information
2. A piece of metal with a mass of 16.6 g is submerged in 46.3 ml of water in a graduated cylinder. The water level increases to 48.6 ml . The correct value for the density of the metal from this data is:
A. $7.217 \mathrm{~g} / \mathrm{ml}$
B. $7.2 \mathrm{~g} / \mathrm{ml}$
C. $0.14 \mathrm{~g} / \mathrm{ml}$
D. $0.138 \mathrm{~g} / \mathrm{ml}$
E. more than $0.1 \mathrm{~g} / \mathrm{ml}$ away from any of these values
3. Manganese makes up 1.3×10^{-4} percent by mass in a healthy body. How many grams of manganese would be found in the body of a person weighing 183 pounds? ($2.2 \mathrm{lbs}=1.0 \mathrm{~kg}$)
A. 110 g
B. 0.11 g
C. 11 g
D. 0.24 g
E. none of these
4. The density of a liquid is determined by massing $10,20,30,40$ and 50 ml of the liquid in a 250 ml beaker. If a graph of total mass of the beaker plus the liquid versus volume is plotted, which statement would be true?
A. the slope of the line is independent of the identity of the liquid
B. the line will pass through the origin
C. the slope of the line will be 1.0
D. The y intercept is the mass of the empty beaker
E. The x intercept is the negative value of the mass of the beaker
5. Which of the following experiments listed below did not give the results described?
A. The electric discharge tube proved that electrons have a negative charge
B. Millikan's oil drop experiment showed that the charge on any particle was a simple multiple of the charge on the electron
C. The Rutherford gold foil experiment was useful in determining the nuclear charge on the atom
D. The Rutherford experiment proved the Thomson "plum Pudding" model of the atom to be essentially correct
6. All of the following are extensive properties except:
A. mass
B. weight
C. volume
D. density
7. Which of the following statements is (are) true?
A. ${ }^{18} \mathrm{O}$ and ${ }^{19} \mathrm{~F}$ have the same number of neutrons
B. ${ }^{14} \mathrm{C}$ and ${ }^{14} \mathrm{~N}$ are isotopes of each other because they have the same mass number
C. ${ }^{18} \mathrm{O}^{2-}$ has the same number of electrons as ${ }^{20} \mathrm{Ne}$
D. a and b
E. a and c
8. Consider the unbalanced equation for the combustion of methane:
$\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ What is the number of moles of carbon dioxide formed when 4 moles of CH_{4} is burned?
A. 1
B. 2
C. 3
D. 4
E. none of these
9. When a piece of aluminum foil is added to a solution of copper (II) chloride, a mixture of aluminum chloride(aq) and copper metal are formed. Write and balanced the equation for this reaction, with coefficients in their lowest ratio. What is the coefficient of the copper metal?
A. 1
B. 2
C. 3
D. 4
E. 6
10. If barium thiocyanate is $\mathrm{Ba}(\mathrm{SCN})_{2}$, what is the subscript for sodium in the formula for sodium thiocyanate?
A. 1
B. 2
C. 3
D. 4
E. none of these
11. The reaction: $\mathrm{KI}_{(\mathrm{aq})}+\mathrm{Br}_{2(\mathrm{l})} \rightarrow \mathrm{KBr}_{(\mathrm{aq})}+\mathrm{I}_{(\mathrm{s})}$ can be classified as $\mathrm{a}(\mathrm{n})$
A. synthesis reaction
B. single replacement reaction
C. double displacement reaction
D. oxidation-reduction reaction
E. two of these
12. Once the charge of the electron was determined what other scientist's experimental results were needed to determine the mass of the electron?
A. Rutherford
B. Dalton
C. Darwin
D. Thomson
E. Both Rutherford and Thomson
13. Which is a chemical process?
A. Filtration
D. Chromatography
B. Distillation
E. Sublimation
C. Electrolysis
14. Aluminum readily reacts with copper II sulfate solution in a single replacement reaction. What is the sum of the coefficients of the products in the completed balanced equation, when all coefficients are reduced to their simplest whole number?
A. 4
B. 5
C. 7
D. 9
E. 12
15. 125.0 g of ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ burns in oxygen to produce carbon dioxide and water. How many grams of CO_{2} are formed?
A. 57.50 g
B. 250.0 g
C. 327.0 g
D. 392.2 g
E. 425.6 g
16. Adipic acid contains 49.32 \% carbon, 43.84 \% oxygen and 6.85 \% hydrogen by mass. What is the empirical formula for adipic acid?
A. $\mathrm{C}_{3} \mathrm{HO}_{3}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{4}$
C. $\mathrm{C}_{2} \mathrm{HO}_{3}$
D. $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{4}$
E. $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$
17. Given the following statements about chemical reactions:
$\begin{array}{lll}\text { I. Mass is conserved } & \text { II. Atoms are conserved } & \text { III. Moles are conserved } \\ \text { IV. Volume is conserved } & \text { V. Molecules are conserved } & \end{array}$ Which is (are) always true for chemical reaction?
A. All are true
B. Only numeral I is true
C. Numerals I and II are true
D. Numerals I, II, and III are true.
E. Only I, III, and V are true.
18. When 2.40 mg sample of a certain compound containing only C atoms and H atoms is burned in an atmosphere of oxygen, 6.00 mg of carbon dioxide is produced. Which expression represents the mg of hydrogen in the sample?
A. 3.00 mg
B. $\frac{6.00 \times 12.0}{44.0}$
C. $(6.00 \times \underline{44.0})-2.40$
12.0
D. $2.40-(6.00 \times \underline{12.0})$
44.0
E. 2.40×12

44
19. How many oxygen ions are in one unit of calcium hydroxide?
A. 1
B. 2
C. 3
D. 4 E. none of these
20. Consider the unbalanced equation for the combustion of methane:

$$
\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

How many moles of which reactant remains after the reaction of a mixture containing1.0 mole of each reactant goes to completion?
A. 0.2 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$ remains
B. 0.8 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$ remains
C. 1.0 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$ remains
D. 1.0 moles of O_{2} remains
E. 5.0 moles of O_{2} remains
21. Using the table below determine which terms on the left correctly match the terms of the right.

M - Pure substance	P - Sodium chloride
N- Solution	Q - Oil and vinegar
O - Heterogeneous mixture	R - sugar in water

A. MP, NQ, OR
B. MR, NQ, OP
C. MQ, NP, OR
D. MQ, NR, OP
E. MP, NR, OQ
22. Consider the reaction $2 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{MgO}_{(\mathrm{g})}$. In an experiment, 0.15 moles of magnesium react with excess oxygen to produce 5.6 g of magnesium oxide. What is the percent yield for this reaction?
A. 7%
D. 5.6%
B. 93%
E. none of these
C. 2.5%
23. What is the mass in grams of 1 atom of aluminum?
A. 26.98 g
B. $6.02 \times 10^{23} \mathrm{~g}$
C. $4.5 \times 10^{-23} \mathrm{~g}$
D. $1.66 \times 10^{-24} \mathrm{~g}$
E. cannot be determined from the information given
24. Which is always true for a negatively charged ion?
A. Number protons = number neutrons
B. Number protons = number electrons
C. Number protons > number electrons
D. Number electrons = number neutrons
E. Number of electrons > number of protons
25. A sample of blue copper (II) sulfate pentahydrate $\left(\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}\right)$ is heated in a crucible until it turns to a white solid. Which graph most nearly represents the change in mass of the crucible and its contents?

Periodic Table and Chemistry Formulae Final copy 1-20-2017

$\begin{array}{\|c} \hline 58 \\ \mathrm{Ce} \\ 140.1 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 59 \\ \mathrm{Pr} \\ 140.9 \\ \hline \end{array}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 144.2 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 61 \\ \text { Pm } \\ (145) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 62 \\ \text { Sm } \\ 150.4 \\ \hline \end{array}$	$\begin{gathered} 63 \\ \text { Eu } \\ 152.0 \\ \hline \end{gathered}$	$\begin{array}{\|c} 64 \\ \text { Gd } \\ 157.3 \\ \hline \end{array}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \\ 158.9 \\ \hline \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 67 \\ \mathrm{Ho} \\ 164.9 \\ \hline \end{array}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.3 \\ \hline \end{gathered}$	$\begin{gathered} 69 \\ \mathrm{Tm}_{168.9} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 70 \\ \mathbf{Y b} \\ 173.0 \\ \hline \end{array}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ \text { Lu5.0 } \\ \hline \end{gathered}$	Lanthanide Series
$\begin{array}{\|l} \hline 90 \\ \text { Th } \\ 232.0 \\ \hline \end{array}$	$\begin{gathered} 91 \\ \mathrm{~Pa} \\ 231.0 \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.0 \end{gathered}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \\ & (237) \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \\ & (244) \end{aligned}$	$\begin{aligned} & 95 \\ & \text { Am } \\ & (243) \end{aligned}$	$\begin{aligned} & 96 \\ & \mathrm{Cm} \\ & (247 \end{aligned}$	97 Bk (247)	$\begin{aligned} & 98 \\ & \text { Cf } \\ & (251) \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \\ & (252) \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & \text { Fm } \\ & (257) \end{aligned}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \\ & (258) \\ & \hline \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \\ & (259) \end{aligned}$	$\begin{aligned} & 103 \\ & \mathbf{L r} \\ & (262) \end{aligned}$	Actinide Series

CHEMISTRY FORMULAS

$\begin{gathered} \begin{array}{c} \text { GASES, LIQUIDS, } \\ \text { SOLUTIONS } \\ \text { PV }=n R T \end{array} \\ \begin{array}{c} \left(\mathrm{P}+\mathrm{n}^{2} \mathrm{a}\right)(\mathrm{V}-\mathrm{nb})=\mathrm{nRT} \\ \mathrm{~V}^{2} \end{array} \\ \mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {total }} \bullet \mathrm{X}_{\mathrm{A}} \\ \mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+ \\ \mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \\ \text { Kelvin }={ }^{\circ} \mathrm{C}+273 \\ \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\ \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \\ \underline{\mathrm{P}}_{1} \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \underline{\mathrm{~V}}_{2} \end{gathered}$	$\begin{aligned} & \mathrm{d}=\frac{\mathrm{m}}{\mathrm{~V}} \\ & \mathrm{u}_{\mathrm{rms}}=\sqrt{\frac{3 k t}{m}}=\sqrt{\frac{3 R T}{M}} \\ & \mathrm{KE}_{\text {per molecule }}=\frac{\mathrm{mv}^{2}}{2} \\ & \mathrm{KE}_{\text {per mole }}=\frac{3 \mathrm{RT}}{2} \\ & \frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}} \\ & \mathrm{M}, \text { molarity }=\text { moles solute } \\ & \text { liter of solution } \end{aligned}$	```P = pressure \(\mathrm{V}=\) volume \(\mathrm{T}=\) Temperature \(\mathrm{n}=\) number of moles \(\mathrm{d}=\) density \(\mathrm{m}=\) mass \(\mathrm{v}=\) velocity where \(X_{A}=\underline{\text { moles } A}\) total moles \(\mathrm{u}_{\mathrm{mms}}=\) root-mean-square-root KE = Kinetic energy \(r=\) rate of effusion \(\mathrm{M}=\) Molar mass \(\pi=\) osmotic pressure i = van't Hoff factor \(\mathrm{K}_{\mathrm{f}}=\) molal freezing point constant \(\mathrm{K}_{\mathrm{b}}=\) molal boiling point constant \(\mathrm{Q}=\) reaction quotient I =current in amperes \(\mathrm{q}=\) charge in coulombs \(\mathrm{t}=\) time \(\mathrm{E}^{\mathrm{o}}=\) standard reduction potential Keq = equilibrium constant```	

ATOMIC STRUCTURE	$\mathrm{E}=$ energy	OXIDATION-REDUCTION
$\Delta \mathrm{E}=\mathrm{h} v$	$v=$ frequency	ELECTROCHEMISTRY
$\mathrm{c}=\mathrm{v} \lambda$	$\lambda=$ wavelength	
	$\mathrm{p}=$ momentum	$\mathrm{Q}=[\mathrm{C}]^{\mathrm{C}}[\mathrm{D}]^{\mathrm{d}}$
$\lambda=\underline{h}$	$\mathrm{v}=$ velocity	[A] ${ }^{\text {a }}$ B] ${ }^{\text {b }}$
m v	$\mathrm{n}=$ principal quantum number	where $\mathrm{a} \mathrm{B}+\mathrm{bB} \leftrightarrow \mathrm{cC}+\mathrm{dD}$
	$\mathrm{c}=$ speed of light $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	
p mv	$\begin{gathered} \mathrm{h}=\text { Planck's constant }=6.63 \times 10^{-34} \text { Joule s } \\ \mathrm{k}=\text { Boltzmann } \end{gathered}$	$\begin{gathered} I=q / t \quad I=\text { amperes, } q=\text { charge in coulombs, } \\ t=\text { time in seconds. } \end{gathered}$
$\mathrm{E}_{\mathrm{n}}=\frac{-2.178 \times 10^{-18}}{\mathrm{n}^{2}}$ joule	$\begin{gathered} \text { constant }=1.38 \times 10^{-23} \text { joule } / \mathrm{K} \\ \text { Avogadro's number }=6.02 \times 10^{23} \\ \text { molecules } / \text { mole } \end{gathered}$	$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{\mathrm{RT} \ln \mathrm{Q}}{\mathrm{n} \mathfrak{I}}=\mathrm{E}_{\text {cell }}^{0}-\frac{0.0592 \log \mathrm{Q} @ 25^{\circ} \mathrm{C}}{\mathrm{n}}$
	coulomb	$\log \mathrm{K}=\frac{\mathrm{nE}}{} \mathrm{E}^{0}$
	1 electron volt/atom $=96.5 \times 10^{23} \mathrm{kj} / \mathrm{mole}$	1 Faraday $\mathfrak{I}=90.0592$ 9600 coulombs $/$ mole

EQUILIBRIUM	EQUILIBIRUM
$\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$	TERMS
	$\mathrm{K}_{\mathrm{a}}=$ weak acid
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] ; \quad \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$	$\mathrm{K}_{\mathrm{b}}=\text { weak base }$ $\mathrm{K}_{\mathrm{w}}=\text { water }$
$\mathrm{pH}+\mathrm{pOH}=14$	$\mathrm{K}_{\mathrm{p}}=$ gas pressure
	$\mathrm{K}_{\mathrm{c}}=$ molar
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\mathrm{A}^{-1}\right]$	concentration
[HA]	
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \left[\mathrm{HB}^{+}\right]$	
[B]	
$\mathrm{pK} \mathrm{a}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}, \quad \mathrm{pK} \mathrm{K}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}$	
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$	
= moles product gas - moles reactant	

KINETICS EQUATIONS

$A_{o}-A=k t \mathrm{~A}_{0}$ is initial concentration, amount.

$$
\ln \frac{A_{o}}{A}=k t
$$

$$
\frac{1}{A}-\frac{1}{A_{o}}=k t
$$

$$
\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

THERMOCHEMISTRY	$\mathrm{S}^{0}=$ standard entropy	Metal	eries
	$\mathrm{G}^{\mathrm{o}}=\text { standard free energy }$	Metal	Metal Ion
$\Delta \mathrm{H}^{0}=\Sigma \Delta \mathrm{H}^{0}$ products $-\sum \Delta \mathrm{H}^{0}$ reactants	$\mathrm{E}^{0}=$ standard reduction potential	Li	Li^{+1}
$\Delta \mathrm{G}^{0}=\sum \Delta \mathrm{G}^{0}$ products $-\sum \Delta \mathrm{G}^{0}$ reactants	$\mathrm{T}=$ temperature	K	K^{+1}
$\Delta G^{\circ}=\sum \Delta G^{\circ}$ products - $\sum \Delta G^{\circ}$ reac	$\mathrm{q}=\text { heat }$	Ba	$\mathrm{Ba}{ }^{+2}$
$\Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{S}^{0}$	$\mathrm{c}=$ specific heat capacity	Ca	Ca^{+2}
$\Delta \mathrm{G}^{0}=-\mathrm{RT} \ln \mathrm{K}=-2.303 \mathrm{RT} \log \mathrm{K}$		Na	Na^{+1}
	$\mathrm{C}_{\mathrm{p}}=$ molar heat capacity at constant pressure	Mg	Mg^{+2}
$\Delta \mathrm{G}^{0}=-\mathrm{nJ} \mathrm{E}^{0}$	1 faraday $\mathfrak{I}=96,500$	A1	Al^{+3}
$\Delta \mathrm{G}=\Delta \mathrm{G}^{0}+\mathrm{RT} \ln \mathrm{Q}=\Delta \mathrm{G}^{0}+2.303 \mathrm{RT} \log \mathrm{Q}$	coulombs/mole	Mn	Mn^{+2}
		Zn	Zn^{+2}
$\mathrm{q}=\mathrm{mC}$ C $\Delta \mathrm{T}$	$\mathrm{C}_{\text {water }}=\frac{4.18 \text { joule }}{\mathrm{g}}$	Cr	Cr^{+3}
$q=m C \Delta T$	Water $\mathrm{H}_{\mathrm{f}}=330$ ioules	Fe	Fe^{+2}
$\mathrm{C}_{\mathrm{p}}=\Delta \mathrm{H}$	$\text { Water } \mathrm{H}_{\mathrm{f}}=\frac{330 \text { joules }}{\text { gram }}$	Co	Co^{+2}
$-\frac{\Delta 11}{\Delta T}$	Water $\mathrm{H}_{\mathrm{v}}=\underline{2260}$ joules	Ni	$\mathrm{Ni}{ }^{+2}$
	gram	Sn	Sn^{+2}
$\mathrm{q}=\mathrm{mH}_{\mathrm{f}}$	$\Delta \mathrm{U}=$ change internal energy of	Pb	Pb^{+2}
	a system	H_{2}	$2 \mathrm{H}^{+1}$
$\mathrm{q}=\mathrm{mH}_{\mathrm{v}}$.	$\Delta \mathrm{H}=$ change in energy of a	Cu	Cu^{+2}
$\Delta \mathrm{U}=\Delta \mathrm{H}-\mathrm{P} \Delta \mathrm{V}$	system	Ag	Ag^{+1}
	-P $\Delta \mathrm{V}=$ work of gases	Hg	Hg^{+2}
	11iter-atm = 101.325 J	Pt	Pt^{+2}
		Au	Au^{+3}

Chemistry I Answer Key PINK TEST

Date: January 12, 2017 Corrections \#19

1.	C	$\mathbf{6 .}$	D	11.	E	16.	E	21.	E
2.	B	7.	E	12.	D	17.	C	22.	B
3.	B	$\mathbf{8 .}$	D	13.	C	18.	D	23.	C
4.	D	9.	C	14.	A	19.	$\mathrm{~B} \&(\mathrm{E})$	24.	E
5.	D	10.	A	15.	D	20.	B	25.	D

CHEMISTRY I (No AP or second year students in this category.)
Chemistry I Topics of Study 2016-2017 Season Pink Exam CHEMISTRY 1 For Honor’s, Enriched or College Prep. Not for AP or Second year students. 25 multiple choice questions per exam.
All questions deal with the applications of chemical concepts not just memorization of ideas or steps.
January Test: scientific method, measurement, factor label conversions, properties, density, graphing, mixtures, compounds, formulas, mole, weight percent, chemical reactions, using the metal and non-metal activity series for writing chemical reactions, types of reactions, stoichiometry, atomic structure and history which includes alpha, beta, gamma radiation, but not electronic configuration.

February Test: Quantum Theory, Electronic structure, orbital notation, dot notation, periodic behavior, specific heat, heat of phase changes, molar heat of fusion, molar heat of vaporization, graphs of phase changes, plus January topics.

March Test: Chemical bonding, molecular structure, simple isomers, intermolecular attractions, redox but not balancing redox equations, kinetic theory, solids, liquids, gases, gas laws, gas Stoichiometry, mole fraction as applied to gases, plus January and February topics.

April Test: solutions, use of solubility rules, reaction rates, chemical equilibrium, entropy, reaction spontaneity, Keq, acids, bases, salts, net ionic equations, thermo chemistry, ΔH, Hess's law, radioactive decay reactions, plus January, February, and March topics.

Dates for 2017 Season

Thursday January 12, 2017 Thursday February 9, 2017
Thursday March 9, 2017 Thursday April 13, 2017
All areas and schools must complete the April exam and mail in the results by April $28{ }^{\text {th }}, 2017$ New Jersey Science League
PO Box 65 Stewartsville, NJ 08886-0065
phone \# 908-213-8923 fax \# 908-213-9391 email: newisl@ptd.net
Web address: http://entnet.com/~personal/njscil/html/
What is to be mailed back to our office?

PLEASE RETURN THE AREA RECORD AND ALL TEAM MEMBER SCANTRONS (ALL

 STUDENTS PLACING $1^{\mathrm{ST}}, 2^{\mathrm{ND}}, 3^{\mathrm{RD}}$, AND 4^{TH}). If you return scantrons of alternates, then label them as ALTERNATES.Dates 2018 Season
Thursday January 11, 2018 Thursday February 8, 2018
Thursday March 8, 2018 Thursday April 12, 2018

New Jersey Science League - Chemistry I Exam
 February 9, 2017 PINK TEST Corrections:

Choose the answer that best completes the statement or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheets is a table of the activity series of the elements. Please PRINT your name, school, area and which test you are taking on to the scan-tron.

1. This word is used to describe substances uniform in composition; components are distributed evenly throughout the mixture (e.g. sugar water, salt water)
A. Solvent
B. Homogeneous
C. Heterogeneous
D. Suspensions
2. A typical class ring will contain 5.5 g of gold (1 ring $=5.5 \mathrm{~g}$). There are 1.6 grams of gold for every ton of gold ore mined. How many tons of gold ore are need to make the typical class ring?
A. 3.4 tons
B. 4.6 tons
C. 6.4 tons
D. 5.5 tons
3. The reaction: $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ can be classified as a(n)
A. single replacement reaction
B. combustion
C. oxidation-reduction reaction
D. two of these
4. A metal, \mathbf{M}, forms an oxide of formula $\mathbf{M}_{2} \mathrm{O}_{3}$. The ground state valence shell electron configuration of the M atom is
A. $n s^{2} n p^{1}$
B. $n p^{6}$
C. $4 s^{1} 3 d^{10}$
D. $4 f^{7}$
5. All of the following are characteristic of metals except:
A. ductile
B. malleable
C. good conductors of heat
D. tend to gain electrons in chemical reactions
6. Naturally occurring copper exists as two isotopes, $\mathrm{Cu}-63$ and $\mathrm{Cu}-65$. The atomic mass of copper is 63.55 amu . What is the approximate percent abundance of $\mathrm{Cu}-63$? C is Correct not A .
A. 30%
B. 50%
C. 70%
D. 90%
7. For which of the following transitions does the light emitted have the longest wavelength?
A. $n=4$ to $n=3$
B. $\mathrm{n}=4$ to $\mathrm{n}=2$
C. $n=4$ to $n=1$
D. all of these transitions would emit light at the same wavelength
8. Which of the following statements about quantum theory is incorrect?
A. No two electrons can have the same set of four quantum numbers
B. The energy and position of an electron cannot be determined simultaneously
C. Lower energy orbitals are filled with electrons before higher energy orbitals
D. When filling orbitals of equal energy, two electrons will occupy the same orbital before filling a new orbital
9. How many d orbitals have a value of $n=2$
A. 0
B. 3
C. 5
D. 7
10. Which of the following atoms or ions has 3 unpaired electrons?
A. Al
C. O
B. N
D. S^{2-}
11. What is the molar mass of fluorapatite, $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}$?
A. 286.1
B. 430.2
C. 398.6
D. 504.3
12. The empirical formula for lindane is CHCl . If the molar mass for lindane is 290.8 $\mathrm{g} / \mathrm{mole}$, how many carbon atoms does a molecule of lindane contain?
A. 2
B. 4
C. 6
D. 8
13. In the Claus reaction series shown below, sulfur is generated from hydrogen sulfide.

$$
\begin{aligned}
& 2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

How many grams of sulfur are produced from 48.0 grams of oxygen?
A. 16.0
B. 32.1
C. 48.1
D. 96.2
14. How many single electrons does the ion Fe^{3+} have? (Single or unpaired)
A. 1
B. 2
C. 3
D. 4
E. 5
15. An element has the electron configuration $[\mathrm{Kr}] 4 \mathrm{~d}^{10} 5 \mathrm{~s}^{2} 5 \mathrm{p}^{2}$. The element is a(n)
A. Nonmetal
B. Metal
C. Transition element
D. Lanthanide
16. All halogens have the following number of valence electrons
A. 1
B. 3
C. 5
D. 7
17. The first ionization energy for calcium is $590 \mathrm{~kJ} / \mathrm{mole}$. The second ionization energy is A. $590 \mathrm{~kJ} / \mathrm{mole}$
B. Less than $590 \mathrm{~kJ} / \mathrm{mole}$
C. Greater than $590 \mathrm{~kJ} /$ mole
D. More information is needed to answer the question
18. Which of the following exhibits the correct orders for increasing both atomic radius and ionization energy, respectively?
A. S, O, F and F, O, S
C. S, F, O and S, F O
B. F, S, O and O, S, F
D. F, O, S and S, O, F
19. Which of the following statements is true?
A. The atomic radius of Li is larger than that of Cs
B. The ionization energy of S^{2-} is greater than that of Cl^{-}
C. The ionic radius of Fe^{+}is larger than that of Fe^{3+}
D. The first ionization energy for H is greater than that of He
20. The heating curve for a fictitious substance is pictured below. The substance is initially in the solid state. In what region is the substance boiling?
A. Region A
B. Region B
C. Region C
D. Region D
E. Region E

Heating Curve for Fictitious Substance

21. When 30.0 mL of pure water at 280 . K is mixed with 50.0 mL of pure water at 330 K , what is the final temperature of the mixture?
A. $290 . \mathrm{K}$
B. 311 K
C. 320 K
D. 405 K
22. A wet shirt is put on a clothesline to dry on a sunny day. The shirt dries because water molecules
A. gain heat energy and condense
B. gain heat energy and evaporate
C. lose heat energy and condense
D. lose heat energy and evaporate
23. 49.5 g of $\mathrm{H}_{2} \mathrm{O}$ is being boiled at its boiling point of $100^{\circ} \mathrm{C}$. How many kJ of energy is required to boil the entire sample of water? The molar heat of vaporization for water is $40.7 \mathrm{~kJ} / \mathrm{mol}$
A. $112 . \mathrm{kJ}$
B. 2000 kJ
C. 20.1 kJ
D. $120 . \mathrm{kJ}$
24. A 100.0 g piece of metal at $100^{\circ} \mathrm{C}$ is added to 140.0 g of water at $25.0^{\circ} \mathrm{C}$. After thermal equilibrium is established, the final temperature of the mixture is $29.6^{\circ} \mathrm{C}$. Calculate the heat capacity of the metal. (specific heat of water is $4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$)
A. $0.38 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
B. $0.76 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
C. $0.96 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
D. $0.031 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
25. How many joules of energy are needed to completely melt 25 g of ice at $0^{\circ} \mathrm{C}$ if the enthalpy of fusion for ice is $6.02 \mathrm{~kJ} / \mathrm{mole}$?
A. 3.87 kJ
B. 4.15 kJ
C. 8.37 kJ
D. 150.5 kJ

Periodic Table and Chemistry Formulae Final copy 2-17-2017

$\begin{array}{\|c} \hline 58 \\ \mathrm{Ce} \\ 140.1 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 59 \\ \mathrm{Pr} \\ 140.9 \\ \hline \end{array}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 144.2 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 61 \\ \text { Pm } \\ (145) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 62 \\ \text { Sm } \\ 150.4 \\ \hline \end{array}$	$\begin{gathered} 63 \\ \text { Eu } \\ 152.0 \\ \hline \end{gathered}$	$\begin{array}{\|c} 64 \\ \text { Gd } \\ 157.3 \\ \hline \end{array}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \\ 158.9 \\ \hline \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 67 \\ \mathrm{Ho} \\ 164.9 \\ \hline \end{array}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.3 \\ \hline \end{gathered}$	$\begin{gathered} 69 \\ \mathrm{Tm}_{168.9} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 70 \\ \mathbf{Y b} \\ 173.0 \\ \hline \end{array}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ \text { Lu5.0 } \\ \hline \end{gathered}$	Lanthanide Series
$\begin{array}{\|l} \hline 90 \\ \text { Th } \\ 232.0 \\ \hline \end{array}$	$\begin{gathered} 91 \\ \mathrm{~Pa} \\ 231.0 \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.0 \end{gathered}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \\ & (237) \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \\ & (244) \end{aligned}$	$\begin{aligned} & 95 \\ & \text { Am } \\ & (243) \end{aligned}$	$\begin{aligned} & 96 \\ & \mathrm{Cm} \\ & (247 \end{aligned}$	97 Bk (247)	$\begin{aligned} & 98 \\ & \text { Cf } \\ & (251) \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \\ & (252) \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & \text { Fm } \\ & (257) \end{aligned}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \\ & (258) \\ & \hline \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \\ & (259) \end{aligned}$	$\begin{aligned} & 103 \\ & \mathbf{L r} \\ & (262) \end{aligned}$	Actinide Series

CHEMISTRY FORMULAS

GASES, LIQUIDS, SOLUTIONS $\mathrm{PV}=\mathrm{nRT}$	$\mathrm{d}=\mathrm{m}$	P = pressure	R, Gas constant $=8.31$ Joules
	V	$\mathrm{V}=$ volume	Mole Kelvin
	$3 \mathrm{kt} \quad 3 \mathrm{RT}$	$\mathrm{T}=$ Temperature	$=0.0821$ liter atm
	$\mathrm{u}_{\mathrm{ms}}=\sqrt{\frac{3 k t}{}}=\sqrt{\frac{3 R T}{M}}$	$\mathrm{n}=$ number of moles	mole Kelvin
$\frac{\left(P+n^{2} a\right)(V-n b)}{V^{2}}=n R T$	$\mathrm{u}_{\mathrm{ms}} \sqrt{m} \sqrt{M}$	d = density	$=8.31$ volts coulombs
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {total }} \bullet \mathrm{X}_{\mathrm{A}}$	$\mathrm{KE}_{\text {per molecule }}=\frac{\mathrm{mv}^{2}}{2}$	$\mathrm{v}=$ velocity	Boltzmann's constant,
		where $\mathrm{X}_{\mathrm{A}}=\underline{\text { moles A }}$	$\mathrm{k}=1.38 \times 10^{-23}$ Joule
$\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+$	$\mathrm{KE}_{\text {per mole }}=\underline{3 R T}$	total moles	K
	$\mathrm{KE}_{\text {per mole }}=\frac{3 \mathrm{KI}}{2}$	$\mathrm{u}_{\text {mms }}=$ root-mean-square-root	$\mathrm{K}_{\text {f water }}=1.86 \mathrm{Kelvin} / \mathrm{molal}$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{m}}$		KE = Kinetic energy	$\mathrm{K}_{\mathrm{b} \text { water }}=0.512 \mathrm{Kelvin} / \mathrm{molal}$
		$\mathrm{r}=$ rate of effusion	
Kelvin $={ }^{\circ} \mathrm{C}+273$	$\frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}$	M = Molar mass	$\begin{gathered} \mathrm{STP}=0.00^{\circ} \mathrm{C}, 1.00 \mathrm{~atm}(101.3 \mathrm{kPa}=760 \\ \mathrm{mm} \text { of } \mathrm{Hg}=760 \mathrm{Torr}) \end{gathered}$
	$r_{2} \sqrt{M_{1}}$	$\pi=$ osmotic pressure	$=14.7 \mathrm{psi}$
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$	M , molarity = moles solute	i = van't Hoff factor K_{f} = molal freezing point	
	liter of solution	constant	1 faraday $\mathfrak{J}=96,500$ coulombs $/$ mole of
$\frac{V_{1}}{\mathrm{~V}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$		$\mathrm{K}_{\mathrm{b}}=$ molal boiling point	${ }^{\circ} \mathrm{C} \times 9 / 5+32={ }^{\circ} \mathrm{F}$
$\underline{\underline{P}}_{1} \underline{\mathrm{~V}}_{1} \mathrm{~V}_{1}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \underline{\mathrm{~V}_{2}}$		$\mathrm{Q}=$ reaction quotient	$\left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9={ }^{\circ} \mathrm{C}$
		$\mathrm{I}=$ current in amperes	
$\mathrm{T}_{1} \quad \frac{\mathrm{~T}_{2}}{}$		$\mathrm{q}=$ charge in coulombs	
		$\mathrm{t}=$ time	
		$\mathrm{E}^{0}=$ standard reduction	
		potential	
		Keq = equilibrium constant	

ATOMIC STRUCTURE	$\mathrm{E}=$ energy	OXIDATION-REDUCTION
$\Delta \mathrm{E}=\mathrm{h} v$	$v=$ frequency	ELECTROCHEMISTRY
$\mathrm{c}=\mathrm{v} \lambda$	$\lambda=$ wavelength	
	$\mathrm{p}=$ momentum	$\mathrm{Q}=[\mathrm{C}]^{\mathrm{C}}[\mathrm{D}]^{\mathrm{d}}$
$\lambda=\underline{h}$	$\mathrm{v}=$ velocity	[A] ${ }^{\text {a }}$ B] ${ }^{\text {b }}$
m v	$\mathrm{n}=$ principal quantum number	where $\mathrm{a} \mathrm{B}+\mathrm{bB} \leftrightarrow \mathrm{cC}+\mathrm{dD}$
	$\mathrm{c}=$ speed of light $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	
$\mathrm{p}=\mathrm{mv}$	$\begin{gathered} \mathrm{h}=\text { Planck's constant }=6.63 \times 10^{-34} \text { Joule s } \\ \mathrm{k}=\text { Boltzmann } \end{gathered}$	$\begin{gathered} I=q / t \quad I=\text { amperes, } q=\text { charge in coulombs, } \\ t=\text { time in seconds. } \end{gathered}$
$\mathrm{E}_{\mathrm{n}}=\frac{-2.178 \times 10^{-18}}{\mathrm{n}^{2}} \text { joule }$	$\begin{gathered} \text { constant }=1.38 \times 10^{-23} \text { joule } / \mathrm{K} \\ \text { Avogadro's number }=6.02 \times 10^{23} \\ \text { molecules } / \text { mole } \end{gathered}$	$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{\mathrm{RT} \ln \mathrm{Q}}{\mathrm{n} \mathfrak{I}}=\mathrm{E}_{\text {cell }}^{0}-\frac{0.0592 \log \mathrm{Q} @ 25^{\circ} \mathrm{C}}{\mathrm{n}}$
	coulomb	$\log \mathrm{K}=\frac{\mathrm{nE}}{} \mathrm{E}^{0}$
	1 electron volt/atom $=96.5 \times 10^{23} \mathrm{kj} / \mathrm{mole}$	1 Faraday $\mathfrak{I}=96,500$ coulombs $/$ mole

EQUILIBRIUM	EQUILIBIRUM
$\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$	TERMS
	$\mathrm{K}_{\mathrm{a}}=$ weak acid
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] ; \quad \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$	$\mathrm{K}_{\mathrm{b}}=\text { weak base }$ $\mathrm{K}_{\mathrm{w}}=\text { water }$
$\mathrm{pH}+\mathrm{pOH}=14$	$\mathrm{K}_{\mathrm{p}}=$ gas pressure
	$\mathrm{K}_{\mathrm{c}}=$ molar
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\mathrm{A}^{-1}\right]$	concentration
[HA]	
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \left[\mathrm{HB}^{+}\right]$	
[B]	
$\mathrm{pK} \mathrm{a}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}, \quad \mathrm{pK} \mathrm{K}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}$	
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$	
= moles product gas - moles reactant	

KINETICS EQUATIONS

$A_{o}-A=k t \mathrm{~A}_{0}$ is initial concentration, amount.

$$
\ln \frac{A_{o}}{A}=k t
$$

$$
\frac{1}{A}-\frac{1}{A_{o}}=k t
$$

$$
\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

THERMOCHEMISTRY	$\mathrm{S}^{0}=$ standard entropy $\mathrm{H}^{0}=$ standard enthalpy	Metal	eries
	$\mathrm{G}^{\mathrm{o}}=$ standard free energy	Metal	Metal Ion
$\Delta \mathrm{H}^{0}=\Sigma \Delta \mathrm{H}^{0}$ products $-\Sigma \Delta \mathrm{H}^{0}$ reactants	$\mathrm{E}^{0}=$ standard reduction potential	Li	Li^{+1}
$\Delta \mathrm{G}^{0}=\Sigma \Delta \mathrm{G}^{0}$ products $-\sum \Delta \mathrm{G}^{0}$ reactants	T = temperature	K	K^{+1}
$G^{\circ}=\Sigma \Delta G^{\circ}$ products - $\sum \Delta G^{\circ}$	$\mathrm{q}=\text { heat }$	Ba	Ba^{+2}
$\Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{S}^{0}$	$\mathrm{c}=$ specific heat capacity	Ca	Ca^{+2}
$\Delta \mathrm{G}^{0}=-\mathrm{RT} \ln \mathrm{K}=-2.303 \mathrm{RT} \log \mathrm{K}$		Na	Na^{+1}
	$\mathrm{C}_{\mathrm{p}}=$ molar heat capacity at constant pressure	Mg	Mg^{+2}
$\Delta \mathrm{G}^{0}=-\mathrm{nJ} \mathrm{E}^{0}$	1 faraday $\mathfrak{I}=96,500$	A1	Al^{+3}
$\Delta \mathrm{G}=\Delta \mathrm{G}^{0}+\mathrm{RT} \ln \mathrm{Q}=\Delta \mathrm{G}^{0}+2.303 \mathrm{RT} \log \mathrm{Q}$	coulombs/mole	Mn	Mn^{+2}
		Zn	Zn^{+2}
$\mathrm{q}=\mathrm{mC}$ C $\Delta \mathrm{T}$	$\mathrm{C}_{\text {water }}=\frac{4.18 \text { joule }}{\mathrm{g}}$	Cr	$\mathrm{Cr} \mathrm{r}^{+3}$
q m $\mathrm{C} \Delta \mathrm{T}$	Water $\mathrm{H}_{\mathrm{t}}=\underset{330^{2}}{\mathrm{~g} \mathrm{~K}}$	Fe	Fe^{+2}
$\mathrm{C}_{\mathrm{p}}=\Delta \mathrm{H}$	Water $\mathrm{H}_{\mathrm{f}}=\frac{330 \text { joules }}{\text { gram }}$	Co	Co^{+2}
$\frac{\Delta T}{\Delta T}$	Water $\mathrm{H}_{\mathrm{v}}=2260$ joules	Ni	$\mathrm{Ni}{ }^{+2}$
	gram	Sn	Sn^{+2}
$\mathrm{q}=\mathrm{mH}_{\mathrm{f}}$	$\Delta \mathrm{U}=$ change internal energy of	Pb	Pb^{+2}
	a system	H_{2}	$2 \mathrm{H}^{+1}$
$\mathrm{q}=\mathrm{mH}_{\mathrm{v}}$.	$\Delta \mathrm{H}=$ change in energy of a	Cu	Cu^{+2}
$\Delta \mathrm{U}=\Delta \mathrm{H}-\mathrm{P} \Delta \mathrm{V}$	system	Ag	Ag^{+1}
	$-\mathrm{P} \Delta \mathrm{V}=$ work of gases 1liter-atm $=101325 \mathrm{~J}$	Hg	Hg^{+2}
		Pt	Pt^{+2}
		Au	Au^{+3}

Chemistry I Answer Key PINK TEST
 Date: February 9, 2017 Corrections:

1.	B	6.	A (C)	11.	D	16.	D	21.	B
2.	A	7.	A	12.	C	17.	C	22.	B
3.	D	8.	D	13.	D	18.	D	23.	A
4.	A	9.	A	14.	E	19.	C	24.	A
5.	D	10.	B	15.	B	20.	D	25.	C

CHEMISTRY I (No AP or second year students in this category.)
Chemistry I Topics of Study 2016-2017 Season Pink Exam CHEMISTRY 1 For Honor's, Enriched or College Prep. Not for AP or Second year students. 25 multiple choice questions per exam.
All questions deal with the applications of chemical concepts not just memorization of ideas or steps.
January Test: scientific method, measurement, factor label conversions, properties, density, graphing, mixtures, compounds, formulas, mole, weight percent, chemical reactions, using the metal and non-metal activity series for writing chemical reactions, types of reactions, stoichiometry, atomic structure and history which includes alpha, beta, gamma radiation, but not electronic configuration.

February Test: Quantum Theory, Electronic structure, orbital notation, dot notation, periodic behavior, specific heat, heat of phase changes, molar heat of fusion, molar heat of vaporization, graphs of phase changes, plus January topics.

March Test: Chemical bonding, molecular structure, simple isomers, intermolecular attractions, redox but not balancing redox equations, kinetic theory, solids, liquids, gases, gas laws, gas Stoichiometry, mole fraction as applied to gases, plus January and February topics.

April Test: solutions, use of solubility rules, reaction rates, chemical equilibrium, entropy, reaction spontaneity, Keq, acids, bases, salts, net ionic equations, thermo chemistry, ΔH, Hess's law, radioactive decay reactions, plus January, February, and March topics.

Dates for 2017 Season
Thursday January 12, 2017 Thursday February 9, 2017
Thursday March 9, 2017 Thursday April 13, 2017
All areas and schools must complete the April exam and mail in the results by April 28 ${ }^{\text {th }, 2017}$
New Jersey Science League
PO Box 65 Stewartsville, NJ 08886-0065
phone \# 908-213-8923 fax \# 908-213-9391 email: newjsl@ptd.net
Web address: http://entnet.com/~personal/njscil/html/
What is to be mailed back to our office?
PLEASE RETURN THE AREA RECORD AND ALL TEAM MEMBER SCANTRONS (ALL STUDENTS PLACING $1^{\text {ST }}, 2^{\mathrm{ND}}, 3^{\mathrm{RD}}$, AND 4^{TH}).
If you return scantrons of alternates, then label them as ALTERNATES.

Dates 2018 Season

Thursday January 11, 2018 Thursday February 8, 2018
Thursday March 8, 2018 Thursday April 12, 2018

New Jersey Science League - Chemistry I Exam Corrections
 March 9, 2017 PINK TEST

Choose the answer that best completes the statement or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheets is a table of the activity series of the elements. Please PRINT your name, school, area and which test you are taking on to the scan-tron.

1. The cooling curve for a pure substance as it changes from a liquid to a solid is down below. The solid and the liquid coexist at
A. Point Q only
B. Point R only
C. All points on the curve between Q and S
D. All points on the curve between R and T

2. Atoms of ${ }^{16} \mathrm{O},{ }^{17} \mathrm{O}$, and ${ }^{18} \mathrm{O}$ have the same number of
A. protons, but a different number of electrons
B. protons, but a different number of neutrons
C. electrons, but a different number of protons
D. neutrons, but a different number of protons
3. What are the coefficients that will balance the skeleton equation below? Each choice has the coefficients in the order of the substances in the chemical reaction when balanced.
\qquad $\mathrm{AlCl}_{3}+$ \qquad $\mathrm{NaOH} \rightarrow \quad-\mathrm{Al}(\mathrm{OH})_{3}$
$+\quad \ldots \mathrm{NaCl}$
A. 1, 3, 1, 3
C. $1,1,1,3$
B. $3,1,3,1$
D. $1,3,3,1$
4. 871 ml of gas were collected over water at $12.0^{\circ} \mathrm{C}$ and 84.1 kPa . The water vapor pressure at $12.0^{\circ} \mathrm{C}$ is 1.4 kPa . What would be the volume of dry gas at standard pressure if the temperature remained constant?
A. 735 ml
B. 101.3 ml
C. 711 ml
D. 723 ml
5. What is conserved in the reaction shown below? For this reaction is a problem.

$$
\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{HCl}(g)
$$

A. mass only
C. mass, moles and molecules only
B. mass and moles only
D. mass, moles, molecules and volume
6. Which one of the following equations represents the reaction between lithium and fluorine?
A.

C.

E.

B.

D. $: \overparen{\mathrm{Li}}+\stackrel{\mathrm{F}}{\mathrm{F}}: \longrightarrow \mathrm{Li}^{+}+: \stackrel{::^{-}}{-}$
7. In the structural formula below, how many sigma and pi bonds are present?

A. 17 sigma bond and 0 pi bond
B. 17 sigma bond and 5 pi bond
C. 11 sigma bond and 6 pi bond
D. 17 sigma bonds and 6 pi bonds
8. Avogadro's number of representative particles is equal to one \qquad .
A. kilogram
C. kelvin
B. gram
D. mole
9. For which of the following conversions does the value of the conversion factor depend upon the formula of the substance?
A. volume of gas (STP) to moles
B. density of gas (STP) to molar mass
C. mass of any substance to moles
D. moles of any substance to number of particles
10. The atomic radius of main-group elements generally increases down a group because _.
A. effective nuclear charge increases down a group
B. effective nuclear charge decreases down a group
C. the principal quantum number of the valence orbitals increases
D. both effective nuclear charge increases down a group and the principal quantum number of the valence orbitals increases
11. Which of the following has the smallest radius?
A. Cl^{-}
B. K^{+}
C. S^{2-}
D. Ca^{2+}
12. As the number of bonds between two carbon atoms increases, which one of the following decreases?
A. number of electrons between the carbon atoms
B. bond energy
C. bond length
D. all of these
13. When a water molecule forms a hydrogen bond with another water molecule, which atoms are involved in the interaction?
A. A hydrogen from one molecule and a hydrogen from the other molecule.
B. A hydrogen from one molecule and an oxygen from the other molecule.
C. An oxygen from one molecule and an oxygen from the other molecule.
D. Two hydrogens from one molecule and one hydrogen from the other molecule.
14. Which of the species below would you expect to show no hydrogen bonding?
A. NH_{3}
B. $\mathrm{H}_{2} \mathrm{O}$
C. HF
D. CH_{4}
15. The b.p. of the following compounds is expected to decrease in this order (highest b.p. first):

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

I

II

III
A. $\mathrm{I}>\mathrm{II}>$ III
B. $\mathrm{III}>\mathrm{I}>$ II
C. $\mathrm{III}>\mathrm{II}>\mathrm{I}$
D. $\mathrm{II}>\mathrm{III}>\mathrm{I}$
16. Which one of the following substances has the greatest difference in electronegativity?
A. CsF
C. NaCl
B. CsCl
D. NaF
17. Which of the following would be most soluble in water?
A. $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{OH}$
C. $\mathrm{CH}_{3} \mathrm{Cl}$
D. CH_{4}
18. Consider the following neutral atoms in their ground state electron structure: Ca, Cl, C, and P. Arrange these atoms from the least number of single electrons (unpaired) to the most number of single electrons. A substance with no single electrons will count as 0 . Use an = for those that have the same number of single (unpaired) electrons.
A. $\mathrm{Cl}<\mathrm{Ca}=\mathrm{C}<\mathrm{P}$
B. $\mathrm{Ca}<\mathrm{Cl}<\mathrm{C}<\mathrm{P}$
C. $\mathrm{P}<\mathrm{C}<\mathrm{Cl}<\mathrm{Ca}$
D. $\mathrm{Ca}=\mathrm{C}=\mathrm{Cl}<\mathrm{P}$
19. The difference between a molecular formula and a structural formula is that:
A. Molecular formulas give you the ratios of the elements in a compound, while structural formulas tell you how many atoms of each element are present.
B. Molecular formulas tell you where the atoms in a compound are, while structural formulas do not.
C. Molecular formulas do not tell you where the atoms in a compound are located, while structural formulas do.
D. Molecular and structural formulae give the same information
20. A 4.37 g sample of a certain diatomic gas occupies a volume of 3.00 L at 1.00 atm and a temperature of $45^{\circ} \mathrm{C}$. Identify the gas.
A. F_{2}
B. N_{2}
C. H_{2}
D. O_{2}
21. A mixture of gases at STP contains 0.100 moles nitrogen, 0.200 moles oxygen, and 0.200 moles carbon dioxide. What is the partial pressure of nitrogen gas in the mixture?
A. 608 torr
B. 152 torr
C. 760 torr
D. 304 torr
22. Gaseous $\mathrm{C}_{2} \mathrm{H}_{4}$ reacts with O_{2} according to the following unbalanced equation: (yes balance it first)

$$
\mathrm{C}_{2} \mathbf{H}_{4(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \quad \mathrm{CO}_{2(\mathrm{~g})}+\quad \mathbf{H}_{2} \mathbf{O}_{(\mathrm{g})}
$$

What volume of oxygen at STP is needed to react with 1.50 mol of $\mathrm{C}_{2} \mathrm{H}_{4}$?
A. 4.50 L
B. 33.6 L
C. 101 L
D. 202 L
23. Use the kinetic molecular theory of gases to predict what would happen to a closed sample of a gas whose temperature increased while its volume decreased.
A. Its pressure would decrease
B. Its pressure would increase
C. Its pressure would hold constant
D. The number of moles of the gas would decrease
24. The proper assignment of oxidation numbers to the elements in the polyatomic ion $\mathrm{CO}_{3}{ }^{2-}$ would be
A. +6 for C and -6 for O .
B. +6 for C and -2 for O .
C. +4 for C and -6 for O .
D. +4 for C and -2 for O .
25. Which element is oxidized in the following redox reaction?

$$
2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~S}
$$

A. sulfur in $\mathrm{H}_{2} \mathrm{~S}$
B. hydrogen in $\mathrm{H}_{2} \mathrm{~S}$
C. oxygen in O_{2}
D. oxygen in $\mathrm{H}_{2} \mathrm{O}$

Periodic Table and Chemistry Formulae Final copy 2-17-2017

$\begin{array}{\|c} \hline 58 \\ \mathrm{Ce} \\ 140.1 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 59 \\ \mathrm{Pr} \\ 140.9 \\ \hline \end{array}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 144.2 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 61 \\ \text { Pm } \\ (145) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 62 \\ \text { Sm } \\ 150.4 \\ \hline \end{array}$	$\begin{gathered} 63 \\ \text { Eu } \\ 152.0 \\ \hline \end{gathered}$	$\begin{array}{\|c} 64 \\ \text { Gd } \\ 157.3 \\ \hline \end{array}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \\ 158.9 \\ \hline \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 67 \\ \mathrm{Ho} \\ 164.9 \\ \hline \end{array}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.3 \\ \hline \end{gathered}$	$\begin{gathered} 69 \\ \mathrm{Tm}_{168.9} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 70 \\ \mathbf{Y b} \\ 173.0 \\ \hline \end{array}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ \text { Lu5.0 } \\ \hline \end{gathered}$	Lanthanide Series
$\begin{array}{\|l} \hline 90 \\ \text { Th } \\ 232.0 \\ \hline \end{array}$	$\begin{gathered} 91 \\ \mathrm{~Pa} \\ 231.0 \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.0 \end{gathered}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \\ & (237) \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \\ & (244) \end{aligned}$	$\begin{aligned} & 95 \\ & \text { Am } \\ & (243) \end{aligned}$	$\begin{aligned} & 96 \\ & \mathrm{Cm} \\ & (247 \end{aligned}$	97 Bk (247)	$\begin{aligned} & 98 \\ & \text { Cf } \\ & (251) \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \\ & (252) \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & \text { Fm } \\ & (257) \end{aligned}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \\ & (258) \\ & \hline \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \\ & (259) \end{aligned}$	$\begin{aligned} & 103 \\ & \mathbf{L r} \\ & (262) \end{aligned}$	Actinide Series

CHEMISTRY FORMULAS

GASES, LIQUIDS, SOLUTIONS $\mathrm{PV}=\mathrm{nRT}$	$\mathrm{d}=\mathrm{m}$	P = pressure	R, Gas constant $=8.31$ Joules
	V	$\mathrm{V}=$ volume	Mole Kelvin
	$3 \mathrm{kt} \quad 3 \mathrm{RT}$	$\mathrm{T}=$ Temperature	$=0.0821$ liter atm
	$\mathrm{u}_{\mathrm{ms}}=\sqrt{\frac{3 k t}{}}=\sqrt{\frac{3 R T}{M}}$	$\mathrm{n}=$ number of moles	mole Kelvin
$\frac{\left(P+n^{2} a\right)(V-n b)}{V^{2}}=n R T$	$\mathrm{u}_{\mathrm{ms}} \sqrt{m} \sqrt{M}$	d = density	$=8.31$ volts coulombs
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {total }} \bullet \mathrm{X}_{\mathrm{A}}$	$\mathrm{KE}_{\text {per molecule }}=\frac{\mathrm{mv}^{2}}{2}$	$\mathrm{v}=$ velocity	Boltzmann's constant,
		where $\mathrm{X}_{\mathrm{A}}=\underline{\text { moles A }}$	$\mathrm{k}=1.38 \times 10^{-23}$ Joule
$\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+$	$\mathrm{KE}_{\text {per mole }}=\underline{3 R T}$	total moles	K
	$\mathrm{KE}_{\text {per mole }}=\frac{3 \mathrm{KI}}{2}$	$\mathrm{u}_{\text {mms }}=$ root-mean-square-root	$\mathrm{K}_{\text {f water }}=1.86 \mathrm{Kelvin} / \mathrm{molal}$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{m}}$		KE = Kinetic energy	$\mathrm{K}_{\mathrm{b} \text { water }}=0.512 \mathrm{Kelvin} / \mathrm{molal}$
		$\mathrm{r}=$ rate of effusion	
Kelvin $={ }^{\circ} \mathrm{C}+273$	$\frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}$	M = Molar mass	$\begin{gathered} \mathrm{STP}=0.00^{\circ} \mathrm{C}, 1.00 \mathrm{~atm}(101.3 \mathrm{kPa}=760 \\ \mathrm{mm} \text { of } \mathrm{Hg}=760 \mathrm{Torr}) \end{gathered}$
	$r_{2} \sqrt{M_{1}}$	$\pi=$ osmotic pressure	$=14.7 \mathrm{psi}$
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$	M , molarity = moles solute	i = van't Hoff factor K_{f} = molal freezing point	
	liter of solution	constant	1 faraday $\mathfrak{J}=96,500$ coulombs $/$ mole of
$\frac{V_{1}}{\mathrm{~V}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$		$\mathrm{K}_{\mathrm{b}}=$ molal boiling point	${ }^{\circ} \mathrm{C} \times 9 / 5+32={ }^{\circ} \mathrm{F}$
$\underline{\underline{P}}_{1} \underline{\mathrm{~V}}_{1} \mathrm{~V}_{1}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \underline{\mathrm{~V}_{2}}$		$\mathrm{Q}=$ reaction quotient	$\left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9={ }^{\circ} \mathrm{C}$
		$\mathrm{I}=$ current in amperes	
$\mathrm{T}_{1} \quad \frac{\mathrm{~T}_{2}}{}$		$\mathrm{q}=$ charge in coulombs	
		$\mathrm{t}=$ time	
		$\mathrm{E}^{0}=$ standard reduction	
		potential	
		Keq = equilibrium constant	

ATOMIC STRUCTURE	$\mathrm{E}=$ energy	OXIDATION-REDUCTION
$\Delta \mathrm{E}=\mathrm{h} v$	$v=$ frequency	ELECTROCHEMISTRY
$\mathrm{c}=\mathrm{v} \lambda$	$\lambda=$ wavelength	
	$\mathrm{p}=$ momentum	$\mathrm{Q}=[\mathrm{C}]^{\mathrm{C}}[\mathrm{D}]^{\mathrm{d}}$
$\lambda=\underline{h}$	$\mathrm{v}=$ velocity	[A] ${ }^{\text {a }}$ B] ${ }^{\text {b }}$
m v	$\mathrm{n}=$ principal quantum number	where $\mathrm{a} \mathrm{B}+\mathrm{bB} \leftrightarrow \mathrm{cC}+\mathrm{dD}$
	$\mathrm{c}=$ speed of light $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	
$\mathrm{p}=\mathrm{mv}$	$\begin{gathered} \mathrm{h}=\text { Planck's constant }=6.63 \times 10^{-34} \text { Joule s } \\ \mathrm{k}=\text { Boltzmann } \end{gathered}$	$\begin{gathered} I=q / t \quad I=\text { amperes, } q=\text { charge in coulombs, } \\ t=\text { time in seconds. } \end{gathered}$
$\mathrm{E}_{\mathrm{n}}=\frac{-2.178 \times 10^{-18}}{\mathrm{n}^{2}} \text { joule }$	$\begin{gathered} \text { constant }=1.38 \times 10^{-23} \text { joule } / \mathrm{K} \\ \text { Avogadro's number }=6.02 \times 10^{23} \\ \text { molecules } / \text { mole } \end{gathered}$	$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{\mathrm{RT} \ln \mathrm{Q}}{\mathrm{n} \mathfrak{I}}=\mathrm{E}_{\text {cell }}^{0}-\frac{0.0592 \log \mathrm{Q} @ 25^{\circ} \mathrm{C}}{\mathrm{n}}$
	coulomb	$\log \mathrm{K}=\frac{\mathrm{nE}}{} \mathrm{E}^{0}$
	1 electron volt/atom $=96.5 \times 10^{23} \mathrm{kj} / \mathrm{mole}$	1 Faraday $\mathfrak{I}=96,500$ coulombs $/$ mole

EQUILIBRIUM	EQUILIBIRUM
$\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$	TERMS
	$\mathrm{K}_{\mathrm{a}}=$ weak acid
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] ; \quad \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$	$\mathrm{K}_{\mathrm{b}}=\text { weak base }$ $\mathrm{K}_{\mathrm{w}}=\text { water }$
$\mathrm{pH}+\mathrm{pOH}=14$	$\mathrm{K}_{\mathrm{p}}=$ gas pressure
	$\mathrm{K}_{\mathrm{c}}=$ molar
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\mathrm{A}^{-1}\right]$	concentration
[HA]	
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \left[\mathrm{HB}^{+}\right]$	
[B]	
$\mathrm{pK} \mathrm{a}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}, \quad \mathrm{pK} \mathrm{K}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}$	
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$	
= moles product gas - moles reactant	

KINETICS EQUATIONS

$A_{o}-A=k t \mathrm{~A}_{0}$ is initial concentration, amount.

$$
\ln \frac{A_{o}}{A}=k t
$$

$$
\frac{1}{A}-\frac{1}{A_{o}}=k t
$$

$$
\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

THERMOCHEMISTRY	$\mathrm{S}^{0}=$ standard entropy $\mathrm{H}^{0}=$ standard enthalpy	Metal	eries
	$\mathrm{G}^{\mathrm{o}}=$ standard free energy	Metal	Metal Ion
$\Delta \mathrm{H}^{0}=\Sigma \Delta \mathrm{H}^{0}$ products $-\Sigma \Delta \mathrm{H}^{0}$ reactants	$\mathrm{E}^{0}=$ standard reduction potential	Li	Li^{+1}
$\Delta \mathrm{G}^{0}=\Sigma \Delta \mathrm{G}^{0}$ products $-\sum \Delta \mathrm{G}^{0}$ reactants	T = temperature	K	K^{+1}
$G^{\circ}=\Sigma \Delta G^{\circ}$ products - $\sum \Delta G^{\circ}$	$\mathrm{q}=\text { heat }$	Ba	Ba^{+2}
$\Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{S}^{0}$	$\mathrm{c}=$ specific heat capacity	Ca	Ca^{+2}
$\Delta \mathrm{G}^{0}=-\mathrm{RT} \ln \mathrm{K}=-2.303 \mathrm{RT} \log \mathrm{K}$		Na	Na^{+1}
	$\mathrm{C}_{\mathrm{p}}=$ molar heat capacity at constant pressure	Mg	Mg^{+2}
$\Delta \mathrm{G}^{0}=-\mathrm{nJ} \mathrm{E}^{0}$	1 faraday $\mathfrak{I}=96,500$	A1	Al^{+3}
$\Delta \mathrm{G}=\Delta \mathrm{G}^{0}+\mathrm{RT} \ln \mathrm{Q}=\Delta \mathrm{G}^{0}+2.303 \mathrm{RT} \log \mathrm{Q}$	coulombs/mole	Mn	Mn^{+2}
		Zn	Zn^{+2}
$\mathrm{q}=\mathrm{mC}$ C $\Delta \mathrm{T}$	$\mathrm{C}_{\text {water }}=\frac{4.18 \text { joule }}{\mathrm{g}}$	Cr	$\mathrm{Cr} \mathrm{r}^{+3}$
q m $\mathrm{C} \Delta \mathrm{T}$	Water $\mathrm{H}_{\mathrm{t}}=\underset{330^{2}}{\mathrm{~g} \mathrm{~K}}$	Fe	Fe^{+2}
$\mathrm{C}_{\mathrm{p}}=\Delta \mathrm{H}$	Water $\mathrm{H}_{\mathrm{f}}=\frac{330 \text { joules }}{\text { gram }}$	Co	Co^{+2}
$\frac{\Delta T}{\Delta T}$	Water $\mathrm{H}_{\mathrm{v}}=2260$ joules	Ni	$\mathrm{Ni}{ }^{+2}$
	gram	Sn	Sn^{+2}
$\mathrm{q}=\mathrm{mH}_{\mathrm{f}}$	$\Delta \mathrm{U}=$ change internal energy of	Pb	Pb^{+2}
	a system	H_{2}	$2 \mathrm{H}^{+1}$
$\mathrm{q}=\mathrm{mH}_{\mathrm{v}}$.	$\Delta \mathrm{H}=$ change in energy of a	Cu	Cu^{+2}
$\Delta \mathrm{U}=\Delta \mathrm{H}-\mathrm{P} \Delta \mathrm{V}$	system	Ag	Ag^{+1}
	$-\mathrm{P} \Delta \mathrm{V}=$ work of gases 1liter-atm $=101325 \mathrm{~J}$	Hg	Hg^{+2}
		Pt	Pt^{+2}
		Au	Au^{+3}

Chemistry I Answer Key PINK TEST Corrections:

Date: March 9, 2017

1.	C	6.	C	11.	D	16.	A	21.	B
2.	B	7.	D	12.	C	17.	B	22.	C
3.	A	8.	D	13.	B	18.	B	23.	B
4.	C	9.	C	14.	D	19.	C	24.	D
5.	A (D)	10.	C	15.	A	20.	A	25.	A

CHEMISTRY I (No AP or second year students in this category.)
Chemistry I Topics of Study 2016-2017 Season Pink Exam CHEMISTRY 1 For Honor's, Enriched or College Prep. Not for AP or Second year students. 25 multiple choice questions per exam.
All questions deal with the applications of chemical concepts not just memorization of ideas or steps.
January Test: scientific method, measurement, factor label conversions, properties, density, graphing, mixtures, compounds, formulas, mole, weight percent, chemical reactions, using the metal and non-metal activity series for writing chemical reactions, types of reactions, stoichiometry, atomic structure and history which includes alpha, beta, gamma radiation, but not electronic configuration.
February Test: Quantum Theory, Electronic structure, orbital notation, dot notation, periodic behavior, specific heat, heat of phase changes, molar heat of fusion, molar heat of vaporization, graphs of phase changes, plus January topics.
March Test: Chemical bonding, molecular structure, simple isomers, intermolecular attractions, redox but not balancing redox equations, kinetic theory, solids, liquids, gases, gas laws, gas Stoichiometry, mole fraction as applied to gases, plus January and February topics.
April Test: solutions, use of solubility rules, reaction rates, chemical equilibrium, entropy, reaction spontaneity, Keq, acids, bases, salts, net ionic equations, thermo chemistry, ΔH, Hess's law, radioactive decay reactions, plus January, February, and March topics.

Dates for 2017 Season
Thursday March 9, 2017 Thursday April 13, 2017
All areas and schools must complete the April exam and mail in the results by April 28 ${ }^{\text {th }}, 2017$
New Jersey Science League
PO Box 65 Stewartsville, NJ 08886-0065
phone \# 908-213-8923 fax \# 908-213-9391 email: newisl@ptd.net
Web address: http://entnet.com/~personal/njscil/html/
What is to be mailed back to our office?
PLEASE RETURN THE AREA RECORD AND ALL TEAM MEMBER SCANTRONS (ALL STUDENTS PLACING $1^{\mathrm{ST}}, 2^{\mathrm{ND}}, 3^{\mathrm{RD}}$, AND 4^{TH}).
If you return scantrons of alternates, then label them as ALTERNATES.

Dates 2018 Season

Thursday January 11, 2018 Thursday February 8, 2018
Thursday March 8, 2018 Thursday April 12, 2018

New Jersey Science League - Chemistry I Exam No Corrections April 2017 PINK TEST

Choose the answer that best completes the statement or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheets is a table of the activity series of the elements. Please PRINT your name, school, area and which test you are taking on to the scan-tron.

1. Vitamin E, a fat soluble substance, is hydrophobic. It is stored in the body. Vitamin E is:
A. polar
C. an electrolyte
B. nonpolar
D. able to dissolve in water
2. A solution is made by dissolving some salt in a beaker of water. The salt is referred to as the
A. solute
B. filtrate
C. solution
D. solvent
3. Which statement regarding water is true?
A. Energy must be given off in order to break down the crystal lattice of ice to a liquid
B. Water's hydrogen bonds are weaker than covalent bonds
C. Liquid water is less dense than solid water
D. Only covalent bonds are broken when ice melts
4. In which of the following processes will energy be evolved as heat?
A. Sublimation
C. Vaporization
B. Crystallization
D. Melting
5. A 10.0 g sample of HF is dissolved in 300 mL of solution. The concentration of the solution is:
A. 1.7 M
B. 3.0 M
C. $\quad 0.10 \mathrm{M}$
D. 5.0 M
6. The following three beakers each had different amounts of PbI_{2} (solid) added. Then different amounts of water were added to each as indicated by the drawings. The aqueous solutions became saturated with PbI_{2}. The three beakers each contain different volumes of a saturated solution of PbI_{2} and different masses of solid PbI_{2} :

Beaker I

Beaker II

Beaker III

What is the relationship for the $\left[\mathrm{Pb}^{2+}\right]$ in the solutions in the three beakers?
A. $\mathrm{I}=\mathrm{II}=\mathrm{III}$
C. II $>$ III $>$ I
B. I $>$ II $>$ III
D. III $>$ II $>$ I
7. Which of the following aqueous solutions contains the greatest number of ions?
A. $\quad 400.0 \mathrm{~mL}$ of 0.10 M NaCl
B. 300.0 mL of $0.10 \mathrm{M} \mathrm{CaCl}_{2}$
C. 200.0 mL of $0.10 \mathrm{M} \mathrm{FeCl}_{3}$
D. 800.0 mL of 0.10 M sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$
8. The balanced net ionic equation for precipitation of CaCO_{3} when aqueous solutions of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and CaCl_{2} are mixed is \qquad .
A. $2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{CO}_{3}{ }^{2-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3(\text { aq })}$
B. $2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})}^{-} \rightarrow 2 \mathrm{NaCl}_{(\mathrm{aq})}$
C. $\mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3(\mathrm{aq})}$
D. $\mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+\mathrm{CO}_{3}{ }^{2-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{CaCO}_{3(\mathrm{~s})}$
9. The rate of a reaction depends upon:
A. the concentration of the reactants.
B. the temperature of the reaction.
C. whether or not a catalyst is used.
D. the nature of the reactants.
E. All of the above are correct.
10. The rate law for a reaction is rate $=\mathbf{k}[\mathbf{A}][\mathbf{B}]^{2}$ Which of the following statements is/are true?
I. If $[B]$ is doubled, the reaction rate will increase by a factor of 4.
II. The reaction is first order in A.
III. k is the reaction rate constant
IV. The reaction is second order overall
A. Only I and II are true
C. I, II, and III are true
B. I, II, and IV are true
D. Only IV is true
11. Which energy difference in the energy profile below corresponds to the activation energy for the forward reaction?
A. x
B. y
C. $x+y$
D. $y-x$

12. What is true of any reversible reaction that has reached equilibrium?
A. More products will be produced if the reaction is cooled
B. All products and reactants will have the same concentrations
C. There is a specific ratio of products to reactants at a specific temperature
D. The forward and backward reactions are occurring at different speeds
13. Which of the following is true for a system whose equilibrium constant is relatively small?
A. It will take a short time to reach equilibrium.
B. It will take a long time to reach equilibrium.
C. The equilibrium lies to the left.
D. The equilibrium lies to the right.
E. Two of these.
14. The value of $\Delta \mathrm{H}$ for the reaction below is -72 kJ . How many kJ of heat are released when 1.0 mol of HBr is formed in this reaction?

$$
\mathbf{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HBr}_{(\mathrm{g})}
$$

A. -36
B. -72
C. 36
D. 72
15. What is $\Delta \mathrm{H}$ for the following reaction ? $\mathbf{I F}_{5(\mathrm{~g})} \rightarrow \mathbf{I F}_{\mathbf{3 (\mathrm { g })}}+\mathbf{F}_{\mathbf{2 (\mathrm { g })}}$
$\mathrm{IF}_{(\mathrm{g})}+\mathrm{F}_{2(\mathrm{~g})} \rightarrow \mathrm{IF}_{3(\mathrm{~g})}$
$\Delta \mathrm{H}=-390 \mathrm{~kJ}$
$\mathrm{IF}_{(\mathrm{g})}+\mathbf{2} \mathrm{F}_{\mathbf{2}(\mathrm{g})} \rightarrow \mathrm{IF}_{5(\mathrm{~g})}$
$\Delta H=-745 k J$
A. -1135
B. +35
C. -355
D. +355
16. The pH of a 0.0001 M KOH solution is:
A. 10
B. 2
C. 4
D. 7
17. According to the Bronstead-Lowry theory of acids and bases, which substances are bases in the following reaction? $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$
A. HA and $\mathrm{H}_{2} \mathrm{O}$
C. HA and A^{-}
B. $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$
D. $\mathrm{H}_{2} \mathrm{O}$ and A^{-}
18. Which of the following is a salt of the conjugate base of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$?
A. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
B. $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. OH^{-}
19. If the pOH of solution A is 2.5 and the pOH of B is 10.1 , then which of the following is true?
A. Solution A has a higher concentration of hydronium ions than B .
B. Solution B has a higher concentration of hydroxide ions than A.
C. Solution A is more basic than solution B.
D. Solution A is more acidic than solution B.
20. Which one of the following reactions is (are) spontaneous at all temperatures?
A. $\mathrm{CO}_{2(\mathrm{~s})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=+25.1 \mathrm{~kJ}$
B. $2 \mathrm{NCl}_{3(\mathrm{~g})} \rightarrow 3 \mathrm{Cl}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=-460 \mathrm{~kJ}$
C. Both are spontaneous at all temperatures
D. Both are non-spontaneous at all temperatures
21. Which of the following shows a decrease in entropy?
A. Melting ice
C. Liquid reactants forming a
B. Precipitation gas
D. A burning piece of wood
22. Uranium-238 emits an alpha particle($\left({ }^{4} \mathrm{He}_{2}{ }^{2+}\right)$ What does it transmutate into?
A. Th-234
C. U-234
B. Th-242
D. $\mathrm{Pu}-242$
23. Isotopes of an element have nuclei with
A. the same number of protons, but different numbers of neutrons.
B. the same number of protons, and the same number of neutrons
C. different number of protons, and a different number of neutrons.
D. a different number of protons, and the same number of neutrons.
24. If 4.0×10^{18} atoms decay with a half-life of 2.3 years, how many atoms remain after 6.9 years?
A. 5.0×10^{17}
B. 1.7×10^{18}
C. 1.3×10^{17}
D. 1.1×10^{18}
25. Which one of the following is a strong electrolyte?
A. water, $\mathrm{H}_{2} \mathrm{O}$
C. glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
B. potassium fluoride, KF
D. methanol, $\mathrm{CH}_{3} \mathrm{OH}$

Periodic Table and Chemistry Formulae Final copy 2-17-2017

$\begin{array}{\|c} \hline 58 \\ \mathrm{Ce} \\ 140.1 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 59 \\ \mathrm{Pr} \\ 140.9 \\ \hline \end{array}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 144.2 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 61 \\ \text { Pm } \\ (145) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 62 \\ \text { Sm } \\ 150.4 \\ \hline \end{array}$	$\begin{gathered} 63 \\ \text { Eu } \\ 152.0 \\ \hline \end{gathered}$	$\begin{array}{\|c} 64 \\ \text { Gd } \\ 157.3 \\ \hline \end{array}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \\ 158.9 \\ \hline \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 67 \\ \mathrm{Ho} \\ 164.9 \\ \hline \end{array}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.3 \\ \hline \end{gathered}$	$\begin{gathered} 69 \\ \mathrm{Tm}_{168.9} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 70 \\ \mathbf{Y b} \\ 173.0 \\ \hline \end{array}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ \text { Lu5.0 } \\ \hline \end{gathered}$	Lanthanide Series
$\begin{array}{\|l} \hline 90 \\ \text { Th } \\ 232.0 \\ \hline \end{array}$	$\begin{gathered} 91 \\ \mathrm{~Pa} \\ 231.0 \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.0 \end{gathered}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \\ & (237) \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \\ & (244) \end{aligned}$	$\begin{aligned} & 95 \\ & \text { Am } \\ & (243) \end{aligned}$	$\begin{aligned} & 96 \\ & \mathrm{Cm} \\ & (247 \end{aligned}$	97 Bk (247)	$\begin{aligned} & 98 \\ & \text { Cf } \\ & (251) \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \\ & (252) \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & \text { Fm } \\ & (257) \end{aligned}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \\ & (258) \\ & \hline \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \\ & (259) \end{aligned}$	$\begin{aligned} & 103 \\ & \mathbf{L r} \\ & (262) \end{aligned}$	Actinide Series

CHEMISTRY FORMULAS

GASES, LIQUIDS, SOLUTIONS $\mathrm{PV}=\mathrm{nRT}$	$\mathrm{d}=\mathrm{m}$	P = pressure	R, Gas constant $=8.31$ Joules
	V	$\mathrm{V}=$ volume	Mole Kelvin
	$3 \mathrm{kt} \quad 3 \mathrm{RT}$	$\mathrm{T}=$ Temperature	$=0.0821$ liter atm
	$\mathrm{u}_{\mathrm{ms}}=\sqrt{\frac{3 k t}{}}=\sqrt{\frac{3 R T}{M}}$	$\mathrm{n}=$ number of moles	mole Kelvin
$\frac{\left(P+n^{2} a\right)(V-n b)}{V^{2}}=n R T$	$\mathrm{u}_{\mathrm{ms}} \sqrt{m} \sqrt{M}$	d = density	$=8.31$ volts coulombs
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {total }} \bullet \mathrm{X}_{\mathrm{A}}$	$\mathrm{KE}_{\text {per molecule }}=\frac{\mathrm{mv}^{2}}{2}$	$\mathrm{v}=$ velocity	Boltzmann's constant,
		where $\mathrm{X}_{\mathrm{A}}=\underline{\text { moles A }}$	$\mathrm{k}=1.38 \times 10^{-23}$ Joule
$\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+$	$\mathrm{KE}_{\text {per mole }}=\underline{3 R T}$	total moles	K
	$\mathrm{KE}_{\text {per mole }}=\frac{3 \mathrm{KI}}{2}$	$\mathrm{u}_{\text {mms }}=$ root-mean-square-root	$\mathrm{K}_{\text {f water }}=1.86 \mathrm{Kelvin} / \mathrm{molal}$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{m}}$		KE = Kinetic energy	$\mathrm{K}_{\mathrm{b} \text { water }}=0.512 \mathrm{Kelvin} / \mathrm{molal}$
		$\mathrm{r}=$ rate of effusion	
Kelvin $={ }^{\circ} \mathrm{C}+273$	$\frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}$	M = Molar mass	$\begin{gathered} \mathrm{STP}=0.00^{\circ} \mathrm{C}, 1.00 \mathrm{~atm}(101.3 \mathrm{kPa}=760 \\ \mathrm{mm} \text { of } \mathrm{Hg}=760 \mathrm{Torr}) \end{gathered}$
	$r_{2} \sqrt{M_{1}}$	$\pi=$ osmotic pressure	$=14.7 \mathrm{psi}$
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$	M , molarity = moles solute	i = van't Hoff factor K_{f} = molal freezing point	
	liter of solution	constant	1 faraday $\mathfrak{J}=96,500$ coulombs $/$ mole of
$\frac{V_{1}}{\mathrm{~V}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$		$\mathrm{K}_{\mathrm{b}}=$ molal boiling point	${ }^{\circ} \mathrm{C} \times 9 / 5+32={ }^{\circ} \mathrm{F}$
$\underline{\underline{P}}_{1} \underline{\mathrm{~V}}_{1} \mathrm{~V}_{1}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \underline{\mathrm{~V}_{2}}$		$\mathrm{Q}=$ reaction quotient	$\left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9={ }^{\circ} \mathrm{C}$
		$\mathrm{I}=$ current in amperes	
$\mathrm{T}_{1} \quad \frac{\mathrm{~T}_{2}}{}$		$\mathrm{q}=$ charge in coulombs	
		$\mathrm{t}=$ time	
		$\mathrm{E}^{0}=$ standard reduction	
		potential	
		Keq = equilibrium constant	

ATOMIC STRUCTURE	$\mathrm{E}=$ energy	OXIDATION-REDUCTION
$\Delta \mathrm{E}=\mathrm{h} v$	$v=$ frequency	ELECTROCHEMISTRY
$\mathrm{c}=\mathrm{v} \lambda$	$\lambda=$ wavelength	
	$\mathrm{p}=$ momentum	$\mathrm{Q}=[\mathrm{C}]^{\mathrm{C}}[\mathrm{D}]^{\mathrm{d}}$
$\lambda=\underline{h}$	$\mathrm{v}=$ velocity	[A] ${ }^{\text {a }}$ B] ${ }^{\text {b }}$
m v	$\mathrm{n}=$ principal quantum number	where $\mathrm{a} \mathrm{B}+\mathrm{bB} \leftrightarrow \mathrm{cC}+\mathrm{dD}$
	$\mathrm{c}=$ speed of light $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	
$\mathrm{p}=\mathrm{mv}$	$\begin{gathered} \mathrm{h}=\text { Planck's constant }=6.63 \times 10^{-34} \text { Joule s } \\ \mathrm{k}=\text { Boltzmann } \end{gathered}$	$\begin{gathered} I=q / t \quad I=\text { amperes, } q=\text { charge in coulombs, } \\ t=\text { time in seconds. } \end{gathered}$
$\mathrm{E}_{\mathrm{n}}=\frac{-2.178 \times 10^{-18}}{\mathrm{n}^{2}} \text { joule }$	$\begin{gathered} \text { constant }=1.38 \times 10^{-23} \text { joule } / \mathrm{K} \\ \text { Avogadro's number }=6.02 \times 10^{23} \\ \text { molecules } / \text { mole } \end{gathered}$	$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{\mathrm{RT} \ln \mathrm{Q}}{\mathrm{n} \mathfrak{I}}=\mathrm{E}_{\text {cell }}^{0}-\frac{0.0592 \log \mathrm{Q} @ 25^{\circ} \mathrm{C}}{\mathrm{n}}$
	coulomb	$\log \mathrm{K}=\frac{\mathrm{nE}}{} \mathrm{E}^{0}$
	1 electron volt/atom $=96.5 \times 10^{23} \mathrm{kj} / \mathrm{mole}$	1 Faraday $\mathfrak{I}=96,500$ coulombs $/$ mole

EQUILIBRIUM	EQUILIBIRUM
$\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$	TERMS
	$\mathrm{K}_{\mathrm{a}}=$ weak acid
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] ; \quad \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$	$\mathrm{K}_{\mathrm{b}}=\text { weak base }$ $\mathrm{K}_{\mathrm{w}}=\text { water }$
$\mathrm{pH}+\mathrm{pOH}=14$	$\mathrm{K}_{\mathrm{p}}=$ gas pressure
	$\mathrm{K}_{\mathrm{c}}=$ molar
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\mathrm{A}^{-1}\right]$	concentration
[HA]	
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \left[\mathrm{HB}^{+}\right]$	
[B]	
$\mathrm{pK} \mathrm{a}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}, \quad \mathrm{pK} \mathrm{K}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}$	
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$	
= moles product gas - moles reactant	

KINETICS EQUATIONS

$A_{o}-A=k t \mathrm{~A}_{0}$ is initial concentration, amount.

$$
\ln \frac{A_{o}}{A}=k t
$$

$$
\frac{1}{A}-\frac{1}{A_{o}}=k t
$$

$$
\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

THERMOCHEMISTRY	$\mathrm{S}^{0}=$ standard entropy $\mathrm{H}^{0}=$ standard enthalpy	Metal	eries
	$\mathrm{G}^{\mathrm{o}}=$ standard free energy	Metal	Metal Ion
$\Delta \mathrm{H}^{0}=\Sigma \Delta \mathrm{H}^{0}$ products $-\Sigma \Delta \mathrm{H}^{0}$ reactants	$\mathrm{E}^{0}=$ standard reduction potential	Li	Li^{+1}
$\Delta \mathrm{G}^{0}=\Sigma \Delta \mathrm{G}^{0}$ products $-\sum \Delta \mathrm{G}^{0}$ reactants	T = temperature	K	K^{+1}
$G^{\circ}=\Sigma \Delta G^{\circ}$ products - $\sum \Delta G^{\circ}$	$\mathrm{q}=\text { heat }$	Ba	Ba^{+2}
$\Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{S}^{0}$	$\mathrm{c}=$ specific heat capacity	Ca	Ca^{+2}
$\Delta \mathrm{G}^{0}=-\mathrm{RT} \ln \mathrm{K}=-2.303 \mathrm{RT} \log \mathrm{K}$		Na	Na^{+1}
	$\mathrm{C}_{\mathrm{p}}=$ molar heat capacity at constant pressure	Mg	Mg^{+2}
$\Delta \mathrm{G}^{0}=-\mathrm{nJ} \mathrm{E}^{0}$	1 faraday $\mathfrak{I}=96,500$	A1	Al^{+3}
$\Delta \mathrm{G}=\Delta \mathrm{G}^{0}+\mathrm{RT} \ln \mathrm{Q}=\Delta \mathrm{G}^{0}+2.303 \mathrm{RT} \log \mathrm{Q}$	coulombs/mole	Mn	Mn^{+2}
		Zn	Zn^{+2}
$\mathrm{q}=\mathrm{mC}$ C $\Delta \mathrm{T}$	$\mathrm{C}_{\text {water }}=\frac{4.18 \text { joule }}{\mathrm{g}}$	Cr	$\mathrm{Cr} \mathrm{r}^{+3}$
q m $\mathrm{C} \Delta \mathrm{T}$	Water $\mathrm{H}_{\mathrm{t}}=\underset{330^{2}}{\mathrm{~g} \mathrm{~K}}$	Fe	Fe^{+2}
$\mathrm{C}_{\mathrm{p}}=\Delta \mathrm{H}$	Water $\mathrm{H}_{\mathrm{f}}=\frac{330 \text { joules }}{\text { gram }}$	Co	Co^{+2}
$\frac{\Delta T}{\Delta T}$	Water $\mathrm{H}_{\mathrm{v}}=2260$ joules	Ni	$\mathrm{Ni}{ }^{+2}$
	gram	Sn	Sn^{+2}
$\mathrm{q}=\mathrm{mH}_{\mathrm{f}}$	$\Delta \mathrm{U}=$ change internal energy of	Pb	Pb^{+2}
	a system	H_{2}	$2 \mathrm{H}^{+1}$
$\mathrm{q}=\mathrm{mH}_{\mathrm{v}}$.	$\Delta \mathrm{H}=$ change in energy of a	Cu	Cu^{+2}
$\Delta \mathrm{U}=\Delta \mathrm{H}-\mathrm{P} \Delta \mathrm{V}$	system	Ag	Ag^{+1}
	$-\mathrm{P} \Delta \mathrm{V}=$ work of gases 1liter-atm $=101325 \mathrm{~J}$	Hg	Hg^{+2}
		Pt	Pt^{+2}
		Au	Au^{+3}

Chemistry I Answer Key PINK TEST No Corrections Date: April 2017

1.	B	6.	A	11.	A	16.	A	21.	B
2.	A	7.	B	12.	C	17.	D	22.	A
3.	B	8.	D	13.	C	18.	B	23.	A
4.	B	9.	E	14.	C	19.	C	24.	A
5.	A	10.	C	15.	D	20.	B	25.	B

Chemistry I Topics of Study 2016-2017 Season Pink Exam CHEMISTRY 1 For Honor's, Enriched or College Prep. Not for AP or Second year students. 25 multiple choice questions per exam.

All questions deal with the applications of chemical concepts not just memorization of ideas or steps.

January Test: scientific method, measurement, factor label conversions, properties, density, graphing, mixtures, compounds, formulas, mole, weight percent, chemical reactions, using the metal and non-metal activity series for writing chemical reactions, types of reactions, stoichiometry, atomic structure and history which includes alpha, beta, gamma radiation, but not electronic configuration.

February Test: Quantum Theory, Electronic structure, orbital notation, dot notation, periodic behavior, specific heat, heat of phase changes, molar heat of fusion, molar heat of vaporization, graphs of phase changes, plus January topics.

March Test: Chemical bonding, molecular structure, simple isomers, intermolecular attractions, redox but not balancing redox equations, kinetic theory, solids, liquids, gases, gas laws, gas Stoichiometry, mole fraction as applied to gases, plus January and February topics.

April Test: solutions, use of solubility rules, reaction rates, chemical equilibrium, entropy, reaction spontaneity, Keq, acids, bases, salts, net ionic equations, thermo chemistry, ΔH, Hess's law, radioactive decay reactions, plus January, February, and March topics.

Dates for 2017 Season
Thursday April 13, 2017
All areas and schools must complete the April exam and mail in the results by April 28 ${ }^{\text {th }}, 2017$
New Jersey Science League
PO Box 65 Stewartsville, NJ 08886-0065
phone \# 908-213-8923 fax \# 908-213-9391 email: newisl@ptd.net
Web address: http://entnet.com/~personal/njscil/html/
What is to be mailed back to our office?
PLEASE RETURN THE AREA RECORD AND ALL TEAM MEMBER SCANTRONS (ALL STUDENTS PLACING $1^{\text {ST }}, 2^{\mathrm{ND}}, 3^{\mathrm{RD}}$, AND 4^{TH}).
If you return scantrons of alternates, then label them as ALTERNATES.

Dates 2018 Season

Thursday January 11, 2018 Thursday February 8, 2018
Thursday March 8, 2018 Thursday April 12, 2018

