New Jersey Science League - Chemistry I Exam
 January 2018 PINK TEST

Choose the answer that best completes the statement or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheets is a table of the activity series of the elements. Please PRINT your name, school, area and which test you are taking on to the scan-tron.

1. Which of the following is an example of a chemical property?
A. color
C. the ability to rust
B. density
D. phase changes
2. Atoms have no electric charge because they:
A. Have an equal number of charged and noncharged particles
B. Have neutrons in their nuclei
C. Have an equal number of electrons and protons
D. Have an equal number of neutrons and protons

Question 3-5 refer to the diagram below.

3. Which of the diagrams represents a pure substance?
A. I only
C. I, II and III
B. I and II
D. I, II, III, and IV
4. Which of the diagrams represents a mixture?
A. I
C. III
B. II
D. IV
5. Which of the following describes diagram III above?
A. It is a mixture composed of substances chemically combined
B. It is a mixture composed of substances physically combined
C. It is a compound composed of substances chemically combined
D. It is a compound composed of substances physically combined
6. The percent composition of aluminum by mass in aluminum hydroxide is:
A. 50%
C. 14\%
B. 35%
D. None of these answers are correct.
7. $\mathrm{N}_{2} \mathrm{~S}_{3}$ is properly named:
A. nitrogen sulfide
C. nitrogen (II) sulfide
B. nitrogen (III) sulfide
D. dinitrogen trisulfide
8. What piece of laboratory equipment is best-suited for accurately measuring the volume of a liquid?
A. graduated cylinder
C. Erlenmeyer flask
B. beaker
D. more than one of the above
9. A 12.3 g block of an unknown metal is immersed in water in a graduated cylinder. The level of the water in the cylinder rose. The level of the water in the cylinder rose exactly the same distance when 17.4 grams of aluminum (density $2.70 \mathrm{~g} / \mathrm{ml}$) was added to the same cylinder. What is the unknown metal's density?
A. $4.55 \mathrm{~g} / \mathrm{ml}$
B. $6.44 \mathrm{~g} / \mathrm{ml}$
C. $\quad 1.91 \mathrm{~g} / \mathrm{ml}$
D. Cannot be determined for the information given
10. The independent variable in an experiment is:
A. The variable you hope to observe in an experiment.
B. The variable you change in an experiment.
C. The variable that isn't changed in an experiment.
D. none of these is correct
11. What is the balanced equation for the reaction that takes place between bromine and sodium iodide?
A. $\mathrm{Br}_{2}+\mathrm{NaI} \rightarrow \mathrm{NaBr}_{2}+\mathrm{I}_{2}$
B. $\mathrm{Br}_{2}+2 \mathrm{NaI} \rightarrow 2 \mathrm{NaBr}+\mathrm{I}_{2}$
C. $\mathrm{Br}_{2}+2 \mathrm{NaI} \rightarrow 2 \mathrm{NaBr}+2 \mathrm{I}$
D. $\mathrm{Br}+\mathrm{NaI}_{2} \rightarrow \mathrm{NaBrI}_{2}$
12. A sample of gold alloy is 5.6% silver by mass. How many grams of silver are there in 1 kg of the alloy?
A. 56 g
B. 0.056 g
C. 5600 g
D. 5.6 g
13. Measurements of the boiling point of a liquid were taken by two laboratory technicians. The actual boiling point was $92.3^{\circ} \mathrm{C}$. Which technician achieved the most accurate results and which technician was the most precise.

Technician A	Technician B
90.0	92.6
90.1	92.0
90.1	92.1
89.8	92.3

A. A is accurate and B is precise
B. B is accurate and A is precise
C. Both are accurate and precise
D. Neither is accurate or precise
14. Write the balanced equation for the complete combustion of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$. When properly balanced, the equation indicates that \qquad moles of O_{2} are required for each mole of $\mathrm{C}_{3} \mathrm{H}_{8}$.
A. 0
B. 1
C. 5
D. 10
15. Calculate the mass, in grams, of hydrogen formed when 25 g of aluminum reacts with excess hydrochloric acid

$$
2 \mathrm{Al}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2}
$$

A. 25
B. 2.8
C. 1.9
D. 1.4
16. How many molecules are in 35.0 grams of $\mathrm{H}_{2} \mathrm{O}$?
A. 2.1×10^{25}
B. 6.02×10^{23}
C. 1.17×10^{24}
D. 1
17. Which particle was used by Ernest Rutherford as a "probe" in his classic experiment on the atom?
A. alpha
B. beta
C. gamma
D. alpha and beta, but not gamma
18. JJ Thomson's cathode ray tube demonstrated that electrons have \qquad charge.
A. A positive
C. No charge
B. A negative
D. It cannot be determined
E.
19. One gram of which of the following contains the largest number of molecules?
A. CH_{4}
B. NH_{3}
C. HNO_{3}
D. N_{2}
E. $\mathrm{H}_{2} \mathrm{O}$
20. Which has the highest percentage of oxygen by mass?
A. NaHCO_{3}
B. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
C. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
D. $\mathrm{H}_{2} \mathrm{O}_{2}$
21. Chemical reactions \qquad .
A. occur only in living organisms
B. create and destroy atoms
C. only occur outside living organisms
D. produce new substances
22. In order for the reaction $2 \mathrm{Al}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2}$ to occur, which one of the following must be true?
A. Al must be above Cl on the activity series
B. Al must be above H on the activity series
C. Heat must be supplied for the reaction
D. A precipitate must be formed
23. In a double-replacement reaction, the \qquad .
A. Products are always molecular
B. Reactants are two ionic compounds
C. Reactants are two elements
D. Products are a new element and a new compound
24. The graph below represents the relationship between volume and temperature. According to the graph, which variable is the dependent variable?

A. Temperature
B. Volume
C. H_{2}
D. $\mathrm{N}_{2} \mathrm{O}$
25. According to the law of conservation of mass, the total mass of the reacting substances is
A. always more than the total mass of the products
B. always less than the total mass of the products
C. sometimes more and sometimes less than the total mass of the products
D. always equal to the total mass of the products.

Periodic Table and Chemistry Formulae Final copy 12-21-2017

$\begin{gathered} \hline 58 \\ \mathrm{Ce} \\ 140.1 \end{gathered}$	$\begin{array}{\|c} 59 \\ \text { Pr } \\ 140.9 \end{array}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 144.2 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 61 \\ \mathrm{Pm}_{\mathrm{m}} \\ (145) \end{array}$	$\begin{array}{\|c} \hline 62 \\ \text { Sm } \\ 150.4 \end{array}$	$\begin{gathered} 63 \\ \text { Eu } \\ \text { En2.0 } \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.3 \end{gathered}$	$\begin{array}{\|c} \hline 65 \\ \mathrm{~Tb} \\ 158.9 \end{array}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \end{gathered}$	$\begin{gathered} 67 \\ \mathrm{Ho} \\ 164.9 \end{gathered}$	$\begin{array}{\|c\|} \hline 68 \\ \mathbf{E r} \\ 167.3 \\ \hline \end{array}$	$\begin{aligned} & 69 \\ & \mathrm{Tm} \\ & 168.9 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 70 \\ \mathbf{Y b} \\ 173.0 \\ \hline \end{array}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 175.0 \end{gathered}$	Lanthanide Series
90	91	92	93	94	95	96	97	98	99	100	101	102	103	Actinide Series
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	

CHEMISTRY FORMULAS

GASES, LIQUIDS, SOLUTIONS PV = nRT	$\mathrm{d}=\mathrm{m}$	P = pressure	R, Gas constant $=8.31$ Joules
	V	$\mathrm{V}=$ volume	Mole Kelvin
	3kt $3 R T$	$\mathrm{T}=$ Temperature	$=0.0821$ liter atm
	$\sqrt{\frac{3 k t}{m}}=\sqrt{\frac{3 R T}{M}}$	$\mathrm{n}=$ number of moles	mole Kelvin
$\frac{\left(P+n^{2} a\right)(V-n b)}{V^{2}}=n R T$	$\sqrt{m} \sqrt{M}$	d = density	$=8.31$ volts coulombs
		$\mathrm{m}=$ mass	mole Kelvin
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {total }} \bullet \mathrm{X}_{\mathrm{A}}$	$\mathrm{KE}_{\text {per molecule }}=\frac{\mathrm{mv}^{2}}{2}$	$\mathrm{v}=$ velocity	Boltzmann's constant,
		where $\mathrm{X}_{\mathrm{A}}=\underline{\text { moles A }}$	$\mathrm{k}=1.38 \times 10^{-23}$ Joule
$\mathrm{P}_{\text {toala }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+$	$K E_{\text {per mole }}=3 \underline{3 R T}$	total moles	K
	$K_{\text {per mole }}=\frac{3 R T}{2}$	$\mathrm{u}_{\text {rms }}=$ root-mean-square-root	$\mathrm{K}_{\text {f water }}=1.86 \mathrm{Kelvin} / \mathrm{molal}$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{m}}$		KE = Kinetic energy	$\mathrm{K}_{\mathrm{b} \text { water }}=0.512 \mathrm{Kelvin} / \mathrm{molal}$
		r = rate of effusion	
Kelvin $={ }^{\circ} \mathrm{C}+273$	$\frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}$	$\mathrm{M}=$ Molar mass	
	$r_{2} \sqrt{M_{1}}$	$\pi=$ osmotic pressure	$=14.7 \mathrm{psi}$
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$	M , molarity $=$ moles solute	i = van't Hoff factor $\mathrm{K}_{\mathrm{f}}=$ molal freezing point	
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}^{2}}$	liter of solution	constant	1 faraday $\mathfrak{J}=\underset{\text { electrons }}{96,500 \text { coulombs/ mole of }}$
		$\mathrm{K}_{\mathrm{b}}=$ molal boiling point	${ }^{\circ} \mathrm{C} \times 9 / 5+32={ }^{\circ} \mathrm{F}$
$\underline{\underline{P}}_{1} \underline{1}_{1} \mathrm{~V}_{1}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \underline{\mathrm{~V}}_{2}$		$\mathrm{Q}=$ reaction quotient	$\left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9={ }^{\circ} \mathrm{C}$
		$\mathrm{I}=$ current in amperes	
		$\mathrm{q}=$ charge in coulombs	
		$\mathrm{t}=$ time	
		$\mathrm{E}^{0}=$ standard reduction	
		potential	
		Keq = equilibrium constant	

ATOMIC STRUCTURE	$\mathrm{E}=$ energy	OXIDATION-REDUCTION
$\Delta \mathrm{E}=\mathrm{h} v$	$v=$ frequency	ELECTROCHEMISTRY
$\mathrm{c}=\mathrm{v} \lambda$	$\lambda=$ wavelength	
	$\mathrm{p}=$ momentum	$\mathrm{Q}=[\mathrm{C}]^{\mathrm{C}}[\mathrm{D}]^{\mathrm{d}}$
$\lambda=\underline{h}$	$\mathrm{v}=$ velocity	[A] ${ }^{\text {a }}$ B] ${ }^{\text {b }}$
m v	$\mathrm{n}=$ principal quantum number	where $\mathrm{a} \mathrm{B}+\mathrm{bB} \leftrightarrow \mathrm{cC}+\mathrm{dD}$
	$\mathrm{c}=$ speed of light $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	
$\mathrm{p}=\mathrm{mv}$	$\begin{gathered} \mathrm{h}=\text { Planck's constant }=6.63 \times 10^{-34} \text { Joule s } \\ \mathrm{k}=\text { Boltzmann } \end{gathered}$	$\begin{gathered} I=q / t \quad I=\text { amperes, } q=\text { charge in coulombs, } \\ t=\text { time in seconds. } \end{gathered}$
$\mathrm{E}_{\mathrm{n}}=\frac{-2.178 \times 10^{-18}}{\mathrm{n}^{2}} \text { joule }$	$\begin{gathered} \text { constant }=1.38 \times 10^{-23} \text { joule } / \mathrm{K} \\ \text { Avogadro's number }=6.02 \times 10^{23} \\ \text { molecules } / \text { mole } \end{gathered}$	$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{\mathrm{RT} \ln \mathrm{Q}}{\mathrm{n} \mathfrak{I}}=\mathrm{E}_{\text {cell }}^{0}-\frac{0.0592 \log \mathrm{Q} @ 25^{\circ} \mathrm{C}}{\mathrm{n}}$
	coulomb	$\log \mathrm{K}=\frac{\mathrm{nE}}{} \mathrm{E}^{0}$
	1 electron volt/atom $=96.5 \times 10^{23} \mathrm{kj} / \mathrm{mole}$	1 Faraday $\mathfrak{I}=0.056500$ coulombs $/$ mole

EQUILIBRIUM	EQUILIBIRUM
$\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$	TERMS
	$\mathrm{K}_{\mathrm{a}}=$ weak acid
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] ; \quad \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$	$\mathrm{K}_{\mathrm{b}}=\text { weak base }$ $\mathrm{K}_{\mathrm{w}}=\text { water }$
$\mathrm{pH}+\mathrm{pOH}=14$	$\mathrm{K}_{\mathrm{p}}=$ gas pressure
	$\mathrm{K}_{\mathrm{c}}=$ molar
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\mathrm{A}^{-1}\right]$	concentration
[HA]	
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \left[\mathrm{HB}^{+}\right]$	
[B]	
$\mathrm{pK} \mathrm{a}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}, \quad \mathrm{pK} \mathrm{K}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}$	
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$	
= moles product gas - moles reactant	

KINETICS EQUATIONS

$A_{o}-A=k t \mathrm{~A}_{0}$ is initial concentration, amount.

$$
\ln \frac{A_{o}}{A}=k t
$$

$$
\frac{1}{A}-\frac{1}{A_{o}}=k t
$$

$$
\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

THERMOCHEMISTRY	$\mathrm{S}^{0}=$ standard entropy $\mathrm{H}^{0}=$ standard enthalpy	Metal	Series
	$\mathrm{G}^{\mathrm{o}}=$ standard free energy	Metal	Metal Ion
$\Delta \mathrm{H}^{0}=\Sigma \Delta \mathrm{H}^{0}$ products $-\Sigma \Delta \mathrm{H}^{0}$ reactants	$\mathrm{E}^{0}=$ standard reduction potential	Li	Li^{+1}
$\Delta \mathrm{G}^{0}=\Sigma \Delta \mathrm{G}^{0}$ products $-\sum \Delta \mathrm{G}^{0}$ reactants	$\mathrm{T}=$ temperature	K	K^{+1}
$\Delta G^{\circ}=\Sigma \Delta G^{\circ}$ products - $\sum \Delta G^{\circ}$	$\mathrm{q}=\text { heat }$	Ba	$\mathrm{Ba}{ }^{+2}$
$\Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{S}^{0}$	$\mathrm{c}=$ specific heat capacity	Ca	Ca^{+2}
$\Delta \mathrm{G}^{0}=-\mathrm{RT} \ln \mathrm{K}=-2.303 \mathrm{RT} \log \mathrm{K}$		Na	Na^{+1}
$\mathrm{Cl}^{0}=-\mathrm{IF}^{0}$	$\mathrm{C}_{\mathrm{p}}=$ molar heat capacity at constant pressure	Mg	Mg^{+2}
$\Delta \mathrm{G}^{0}=-\mathrm{nJ} \mathrm{E}^{0}$	1 faraday $\mathfrak{I}=96,500$	A1	Al^{+3}
$\Delta \mathrm{G}=\Delta \mathrm{G}^{0}+\mathrm{RT} \ln \mathrm{Q}=\Delta \mathrm{G}^{0}+2.303 \mathrm{RT} \log \mathrm{Q}$	coulombs/mole	Mn	Mn^{+2}
		Zn	Zn^{+2}
$\mathrm{q}=\mathrm{mC}$ C $\Delta \mathrm{T}$	$\mathrm{C}_{\text {water }}=\frac{4.18 \text { joule }}{\mathrm{gK}}$	Cr	Cr^{+3}
q m C	Water $\mathrm{H}_{\mathrm{t}}=\underset{330^{2}}{\mathrm{~g} \mathrm{~K}}$	Fe	Fe^{+2}
$\mathrm{C}_{\mathrm{p}}=\Delta \mathrm{H}$	Water $\mathrm{H}_{\mathrm{f}}=\frac{330 \text { joules }}{\text { gram }}$	Co	Co^{+2}
	Water $\mathrm{H}_{\mathrm{v}}=\underline{2260}$ joules	Ni	$\mathrm{Ni}{ }^{+2}$
	gram	Sn	Sn^{+2}
$\mathrm{q}=\mathrm{mH}_{\mathrm{f}}$	$\Delta \mathrm{U}=$ change internal energy of	Pb	Pb^{+2}
	a system	H_{2}	$2 \mathrm{H}^{+1}$
$\mathrm{q}=\mathrm{mH}_{\mathrm{v}}$.	$\Delta \mathrm{H}=$ change in energy of a	Cu	Cu^{+2}
$\Delta \mathrm{U}=\Delta \mathrm{H}-\mathrm{P} \Delta \mathrm{V}$	system	Ag	Ag^{+1}
	$-\mathrm{P} \Delta \mathrm{V}=$ work of gases 1liter-atm $=101325 \mathrm{~J}$	Hg	Hg^{+2}
		Pt	Pt^{+2}
		Au	Au^{+3}

1.	C	6.	B	11.	B	16.	C	21.	D
2.	C	7.	D	12.	A	17.	A	22.	B
3.	C	8.	A	13.	B	18.	B	23.	B
4.	D	9.	C	14.	C	19.	A	24.	B
5.	C	10.	B	15.	B	20.	D	25.	D

CHEMISTRY 1 For Honor's, Enriched or College Prep. Not for AP or Second year students. 25 multiple choice questions per exam. Try to include drawings, lab data, and graphs on each test.
All questions deal with the applications of chemical concepts not just memorization of ideas or steps.
January Test: scientific method, measurement, factor label conversions, properties, graphing, mixtures, compounds, formulas, mole, weight percent, chemical reactions, using the metal and non-metal activity series for writing chemical reactions, types of reactions, stoichiometry, atomic structure and history which includes alpha, beta, gamma radiation, but not electronic configuration.
February Test: Quantum Theory, Electronic structure, orbital notation, dot notation, Coulomb's Law, periodic behavior, specific heat, heat of phase changes, molar heat of fusion, molar heat of vaporization, graphs of phase changes, plus January topics Review.
March Test: Chemical bonding, molecular structure, simple isomers, intermolecular attractions, redox but not balancing redox equations, kinetic theory, solids, liquids, gases, gas laws, gas Stoichiometry, mole fraction as applied to gases, plus January and February topics Review.
April Test: solutions, use of solubility rules, reaction rates, chemical equilibrium, entropy, reaction spontaneity, Keq, acids, bases, salts, net ionic equations, thermo chemistry, $\Delta \mathrm{H}$, Hess's law, radioactive decay reactions, plus January, February, and March topics Review.

Dates for 2018 Season

Thursday January 11, 2018 Thursday February 8, 2018
Thursday March 8, 2018 Thursday April 12, 2018
All areas and schools must complete the April exam and mail in the results
by April 28th, 2018
New Jersey Science League
PO Box 65 Stewartsville, NJ 08886-0065
phone \# 908-213-8923 fax \# 908-213-9391 email: newjsl@ptd.net Web address: http://entnet.com/~personal/njscil/html/

What is to be mailed back to our office?
PLEASE RETURN THE AREA RECORD AND ALL TEAM MEMBER SCANTRONS
(ALL STUDENTS PLACING 1ST, 2ND, 3RD, AND 4TH).
If you return Scantrons of alternates, then label them as ALTERNATES.

Dates for 2019 Season

Thursday January 10, 2019 Thursday February 7, 2019
Thursday March 7, 2019 Thursday April 11, 2019

New Jersey Science League - Chemistry I Exam Corrections

February 2018 PINK TEST
Choose the answer that best completes the statement or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheets is a table of the activity series of the elements. Please PRINT your name, school, area and which test you are taking on to the scan-tron.

1. Bromine exists naturally as a mixture of bromine-79 and bromine-81 isotopes. An atom of bromine-79 contains
A. 35 protons, 44 neutrons, 35 electrons
B. 44 protons, 44 electrons and 35 neutrons
C. 35 protons, 79 neutrons and 35 electrons
D. 79 protons, 79 electrons and 35 neutrons
2. Which of the following is incorrectly named?
A. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, lead (II) nitrate
B. $\mathrm{NH}_{4} \mathrm{ClO}_{4}$, ammonium perchlorate
C. CuSO_{4}, copper (I) sulfate
D. FePO_{4}, iron (III) phosphate
3. What is the mass of one atom of copper in grams?
A. 63.5 g
B. 52.0 g
C. $9.48 \times 10^{21} \mathrm{~g}$
D. $1.06 \times 10^{-22} \mathrm{~g}$
4. A given sample of xenon fluoride contains molecules of a single type $\mathrm{XeF}_{\mathrm{n}}$, where n is some whole number. Given that 9.03×10^{20} molecules of $\mathrm{XeF}_{\mathrm{n}}$ weigh 0.31 g , determine the value of n
A. 1
B. 2
C. 3
D. 4
5. What is the coefficient for oxygen when the following equation is balanced using the smallest whole number coefficients?

$$
\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

A. 3
B. 6
C. 7
D. 14
6. A mixture of BaCl_{2} and NaCl is analyzed by precipitating all the barium as barium sulfate. After the addition of an excess of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to a 3.988 g sample of the mixture, the mass of precipitate collected is 2.113 g . What is the mass percent of barium chloride in the mixture?
A. 59.40%
B. 52.98%
C. 31.17%
D. 47.26%
7. When a hydrogen electron makes a transition from $n=3$ to $n=1$, which of the following statements is/are true?
I. Energy is emitted II. Energy is absorbed
III. The electron loses energy IV. The electron gains energy
V. No energy is associated with this transition
A. I and IV
D. II and IV
B. I and III
E. V
C. II and III
8. Which of the following atoms or ions has three unpaired electrons?
A. N
B. Al
C. S^{2-}
D. Ti^{2+}
9. The electron configuration for the carbon atom is:
A. $1 s^{2} 2 s^{2} 2 p^{2}$
B. $[\mathrm{He}] 2 \mathrm{~s}^{4}$
C. $[\mathrm{Ne}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$
D. $1 s^{2} 2 p^{4}$
10. An element has the electron configuration $[\mathrm{Kr}] 5 s^{2} 4 \mathrm{~d}^{10} 5 \mathrm{p}^{2}$. The element is $\mathrm{a}(\mathrm{n})$
A. nonmetal
C. metal
B. transition metal
D. lanthanide

Nitrogen has five valence electrons. Consider the following electron arrangements when answering 11 and 12:
11. Using the choices in the adjacent drawing which represents the ground state for N^{1+} ?
A.

C. \uparrow

D. $\uparrow \downarrow$

	\uparrow	

A.
B.
C.
D.
E.
12. Using the choices in the adjacent drawing which represents the ground state for N ?
A.
B.
C.
D.
E.
13. Which is the correct dot diagram for N^{3-} ion?

A.

B.

C.

$$
[\cdot \underset{\mathbf{N}}{\mathbf{N}}]^{-3}
$$

D.
14. A sample of a hydrocarbon (containing only hydrogen and carbon) is completely combusted in air. The only products of the reaction are $220 \mathrm{~g} \mathrm{CO}_{2}$ and $45 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of the hydrocarbon?
A. CH
B. CH_{2}
C. $\mathrm{C}_{2} \mathrm{H}_{3}$
D. $\mathrm{C}_{3} \mathrm{H}_{4}$
E. $\mathrm{C}_{3} \mathrm{H}_{8}$
15. Which of the following lists the atoms in order of decreasing first ionization energy?
A. $\mathrm{Li}>\mathrm{O}>\mathrm{N}>\mathrm{F}$
B. $\mathrm{Li}>\mathrm{N}>\mathrm{O}>\mathrm{F}$
C. $\mathrm{F}>\mathrm{O}>\mathrm{N}>\mathrm{Li}$
D. $\mathrm{Na}>\mathrm{Sr}>\mathrm{O}>\mathrm{F}$
16. Which of the following statements is false?
A. A sodium atom has a smaller radius that a potassium atom
B. Neon atoms have a smaller radius than argon atoms
C. A fluorine atom has a smaller first ionization energy than an oxygen atom
D. A cesium atom has a smaller first ionization energy than a lithium atom

Use the Specific Heat table below to answer questions 17 and 18.
17. A piece of aluminum with a mass of 100.0 g has a temperature of $20.0^{\circ} \mathrm{C}$. It absorbs 1100 J of heat energy. What is the final temperature of the metal?
A. $\quad 7.8^{\circ} \mathrm{C}$
B. $\quad 12.2^{\circ} \mathrm{C}$
C. $\quad 20.0^{\circ} \mathrm{C}$
D. $\quad 32.2^{\circ} \mathrm{C}$

Substance	$\mathrm{C}\left(\mathrm{J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right)$
Air	1.01
Aluminum	0.902
Copper	0.385
Gold	0.129
Iron	0.450
Mercury	0.140
NaCl	0.864
Ice	2.03
Water	4.18

18. A 10.0 g sample of which substance would show the greatest change in temperature when absorbing 350 J of heat energy?
A. Aluminum
C. Gold
B. Copper
D. Water

Use the information in the beakers below to answer questions 19 and 20:

19. The beakers both contain the same substance. The beaker with the greater average kinetic energy is
A. Beaker A
B. Beaker B
C. Both are the same
D. Cannot be determined without the density

20. A 50.0 mL ice cube ($\mathrm{H}_{2} \mathrm{O}$ solid) at $0^{\circ} \mathrm{C}$ is placed inside each beaker. The greatest amount of thermal energy will GAINED by \qquad _.
A. the fluid in beaker A
B. the ice cube in beaker A
C. the fluid in beaker B
D. the ice cube in beaker B
21. The diagram below shows the heating of an unknown substance. Its melting point is \qquad .
A. between $35^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$
B. $70^{\circ} \mathrm{C}$
C. between $70^{\circ} \mathrm{C}$ and $140^{\circ} \mathrm{C}$
D. $140^{\circ} \mathrm{C}$

22. Using the data below, what is the order of changes that occur when ethanol is heated from $-25.0^{\circ} \mathrm{C}$ to $85.0^{\circ} \mathrm{C}$?

Boiling point of ethanol: $78.5^{\circ} \mathrm{C}$
Melting point of ethanol: $-117.3^{\circ} \mathrm{C}$
A. Phase change, temperature change
B. Phase change, temperature change, phase change
C. Temperature change, phase change
D. Temperature change, phase change, temperature change

Use the graph and table of constants for water below to answer 23-25

23. At what time is the average kinetic energy the greatest?
A. t_{1}
B. t_{2}
C. t_{3}
D. t_{4}
E. t_{5}

Specific heat of ice	$2.1 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
Specific heat of water	$4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
Specific heat of steam	$2.0 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
Molar heat of tusion	6.02 kJmol
Molar heat of vaporization	$40.7 \mathrm{~kJ} / \mathrm{mol}$

24. A 48.0 g sample of ice at $0^{\circ} \mathrm{C}$ absorbs 6400 J of heat energy. After the heat is applied, the sample is now: A and C both correct since not enough heat to melt all of the ice.
A. still a solid
C. a liquid
B. is melting
D. is boiling
25. How much energy is required to boil 10.0 g of water which is at $100^{\circ} \mathrm{C}$?
A. 10.0 kJ
B. 22.6 kJ
C. 40.7 kJ
D. 407 kJ

Periodic Table and Chemistry Formulae Updated 3-12-2018

$\begin{array}{\|c\|} \hline 58 \\ \mathrm{Ce} \\ \hline 140.1 \\ \hline \end{array}$	$\begin{array}{\|c} 59 \\ \mathrm{Pr} \\ 140.9 \\ \hline \end{array}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 144.2 \\ \hline \end{gathered}$	$\begin{aligned} & 61 \\ & \text { Pm } \\ & (145) \\ & \hline \end{aligned}$	$\begin{gathered} 62 \\ \text { Sm } \\ 150.4 \\ \hline \end{gathered}$	$\begin{gathered} 63 \\ \mathrm{Eu} \\ 152.0 \\ \hline \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.3 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 65 \\ \text { Tb } \\ 158.9 \\ \hline \end{array}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \\ \hline \end{gathered}$	$\begin{gathered} 67 \\ \mathrm{Ho} \\ 164.9 \\ \hline \end{gathered}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.3 \end{gathered}$	$\begin{gathered} 69 \\ \mathrm{Tm} \\ 168.9 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 70 \\ \mathbf{Y b} \\ 173.0 \\ \hline \end{array}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 175.0 \\ \hline \end{gathered}$	Lanthanide Series
$\begin{aligned} & 90 \\ & \text { Th } \\ & 232.0 \\ & \hline \end{aligned}$	$\begin{gathered} 91 \\ \mathrm{~Pa} \\ 231.0 \\ \hline \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.0 \end{gathered}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \\ & (237) \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \\ & (244) \end{aligned}$	$\begin{aligned} & 95 \\ & \text { Am } \\ & (243) \end{aligned}$	$\begin{aligned} & 96 \\ & \text { Cm } \\ & (247) \end{aligned}$	$\begin{aligned} & 97 \\ & \text { Bk } \\ & (247) \end{aligned}$	$\begin{aligned} & 98 \\ & \text { Cf } \\ & (251) \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \\ & (252) \end{aligned}$	$\begin{aligned} & 100 \\ & \text { Fm } \\ & (257) \end{aligned}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \\ & (258) \end{aligned}$	$\begin{aligned} & 102 \\ & \mathrm{No} \\ & (259) \end{aligned}$	$\begin{aligned} & 103 \\ & \mathbf{L r} \\ & (262) \end{aligned}$	Actinide Series

CHEMISTRY FORMULAS

$\begin{gathered} \begin{array}{c} \text { GASES, LIQUIDS, } \\ \text { SOLUTIONS } \\ \mathrm{PV}=\mathrm{nRT} \end{array} \\ \begin{array}{c} \left(\mathrm{P}+\mathrm{n}^{2} \mathrm{a}\right)(\mathrm{V}-\mathrm{nb})=\mathrm{nRT} \\ \mathrm{~V}^{2} \end{array} \\ \mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {total }} \bullet \mathrm{X}_{\mathrm{A}} \\ \mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+ \\ \mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \\ \text { Kelvin }={ }^{\circ} \mathrm{C}+273 \\ \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\ \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \\ \underline{\mathrm{P}}_{1} \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \underline{\mathrm{~V}}_{2} \end{gathered}$	$\begin{gathered} \mathrm{d}=\frac{\mathrm{m}}{\mathrm{~V}} \\ \mathrm{u}_{\mathrm{mms}}=\sqrt{\frac{3 k t}{m}}=\sqrt{\frac{3 R T}{M}} \\ \mathrm{KE}_{\text {per molecule }}=\frac{\mathrm{mv}^{2}}{2} \\ \mathrm{KE}_{\text {per mole }}=\frac{3 \mathrm{RT}}{2} \\ \frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}} \\ \mathrm{M}, \text { molarity }=\text { moles solute } \\ \text { liter of solution } \end{gathered}$	```P = pressure \(\mathrm{V}=\) volume \(\mathrm{T}=\) Temperature \(\mathrm{n}=\) number of moles \(\mathrm{d}=\) density \(\mathrm{m}=\) mass \(\mathrm{v}=\) velocity where \(\mathrm{X}_{\mathrm{A}}=\) moles A total moles \(\mathrm{u}_{\mathrm{rms}}=\) root-mean-square-root KE = Kinetic energy \(r\) = rate of effusion \(\mathrm{M}=\) Molar mass \(\pi=\) osmotic pressure \(\mathrm{i}=\) van't Hoff factor \(\mathrm{K}_{\mathrm{f}}=\) molal freezing point constant \(\mathrm{K}_{\mathrm{b}}=\) molal boiling point constant \(\mathrm{Q}=\) reaction quotient I =current in amperes \(\mathrm{q}=\) charge in coulombs \(\mathrm{t}=\) time \(\mathrm{E}^{0}=\) standard reduction potential Keq \(=\) equilibrium constant```	

ATOMIC STRUCTURE	$\mathrm{E}=$ energy	OXIDATION-REDUCTION
$\Delta \mathrm{E}=\mathrm{h} v$	$v=$ frequency	ELECTROCHEMISTRY
$\mathrm{c}=\mathrm{v} \lambda$	$\lambda=$ wavelength	
	$\mathrm{p}=$ momentum	$\mathrm{Q}=[\mathrm{C}]^{\mathrm{C}}[\mathrm{D}]^{\mathrm{d}}$
$\lambda=\underline{h}$	$\mathrm{v}=$ velocity	[A] ${ }^{\text {a }}$ B] ${ }^{\text {b }}$
m v	$\mathrm{n}=$ principal quantum number	where $\mathrm{a} \mathrm{B}+\mathrm{bB} \leftrightarrow \mathrm{cC}+\mathrm{dD}$
	$\mathrm{c}=$ speed of light $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	
$\mathrm{p}=\mathrm{mv}$	$\begin{gathered} \mathrm{h}=\text { Planck's constant }=6.63 \times 10^{-34} \text { Joule s } \\ \mathrm{k}=\text { Boltzmann } \end{gathered}$	$\begin{gathered} I=q / t \quad I=\text { amperes, } q=\text { charge in coulombs, } \\ t=\text { time in seconds. } \end{gathered}$
$\mathrm{E}_{\mathrm{n}}=\frac{-2.178 \times 10^{-18}}{\mathrm{n}^{2}} \text { joule }$	$\begin{gathered} \text { constant }=1.38 \times 10^{-23} \text { joule } / \mathrm{K} \\ \text { Avogadro's number }=6.02 \times 10^{23} \\ \text { molecules } / \text { mole } \end{gathered}$	$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{\mathrm{RT} \ln \mathrm{Q}}{\mathrm{n} \mathfrak{I}}=\mathrm{E}_{\text {cell }}^{0}-\frac{0.0592 \log \mathrm{Q} @ 25^{\circ} \mathrm{C}}{\mathrm{n}}$
	coulomb	$\log \mathrm{K}=\frac{\mathrm{nE}}{} \mathrm{E}^{0}$
	1 electron volt/atom $=96.5 \times 10^{23} \mathrm{kj} / \mathrm{mole}$	1 Faraday $\mathfrak{I}=0.056500$ coulombs $/$ mole

KINETICS EQUATIONS

$A_{o}-A=k t \mathrm{~A}_{0}$ is initial concentration, amount.

$$
\ln \frac{A_{o}}{A}=k t
$$

$$
\frac{1}{A}-\frac{1}{A_{o}}=k t
$$

$$
\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

$$
\mathrm{q}=\mathrm{mC} \mathrm{C} \Delta \mathrm{~T}
$$

$$
\mathrm{C}_{\mathrm{p}}=\underline{\Delta H}
$$

$$
\Delta \mathrm{T}
$$

$$
\mathrm{q}=\mathrm{mH}_{\mathrm{f}}
$$

$$
\mathrm{q}=\mathrm{mH}_{\mathrm{v}}
$$

$$
\Delta \mathrm{U}=\Delta \mathrm{H}-\mathrm{P} \Delta \mathrm{~V}
$$

$\mathrm{S}^{0}=$ standard entropy
$\mathrm{H}^{0}=$ standard enthalpy
$\mathrm{G}^{0}=$ standard free energy
$\mathrm{E}^{0}=$ standard reduction
potential
$\mathrm{T}=$ temperature
$\mathrm{q}=$ heat
$\mathrm{c}=$ specific heat capacity
$\mathrm{C}_{\mathrm{p}}=$ molar heat capacity at constant pressure
1 faraday $\mathfrak{I}=96,500$ coulombs/mole
$\mathrm{C}_{\text {water }}=\frac{4.18 \text { joule }}{\mathrm{g} \mathrm{K}}$ g K
Water $\mathrm{H}_{\mathrm{f}}=\frac{330 \text { joules }}{\text { gram }}$
Water $\mathrm{H}_{\mathrm{v}}=\underline{2260 \text { joules }}$ gram
$\Delta U=$ change internal energy of a system
$\Delta \mathrm{H}=$ change in energy of a system
$-\mathrm{P} \Delta \mathrm{V}=$ work of gases
1liter-atm $=101.325 \mathrm{~J}$

Metal Activity Series	
Metal	Metal Ion
Li	Li^{+1}
K	\mathbf{K}^{+1}
Ba	$\mathrm{Ba}{ }^{+2}$
Ca	Ca^{+2}
Na	Na^{+1}
Mg	Mg^{+2}
A1	Al^{+3}
Mn	Mn^{+2}
Zn	Zn^{+2}
Cr	Cr^{+3}
Fe	Fe^{+2}
Co	Co^{+2}
Ni	$\mathrm{Ni}{ }^{+2}$
Sn	Sn^{+2}
Pb	Pb^{+2}
H_{2}	$2 \mathrm{H}^{+1}$
Cu	Cu^{+2}
Ag	Ag^{+1}
Hg	Hg^{+2}
Pt	Pt^{+2}
Au	Au^{+3}

Chemistry I Answer Key PINK TEST Corrections
 Date: February 2018

1.	A	6.	D	11.	D	16.	C	21.	B
2.	C	7.	B	12.	A	17.	D	22.	D
3.	D	8.	A	13.	C	18.	C	23.	E
4.	D	9.	A	14.	A	19.	B	24.	A \& C
5.	C	10.	C	15.	C	20.	D	25.	B

CHEMISTRY 1 For Honor's, Enriched or College Prep. Not for AP or Second year students. 25 multiple choice questions per exam. Try to include drawings, lab data, and graphs on each test.
All questions deal with the applications of chemical concepts not just memorization of ideas or steps. January Test: scientific method, measurement, factor label conversions, properties, graphing, mixtures, compounds, formulas, mole, weight percent, chemical reactions, using the metal and non-metal activity series for writing chemical reactions, types of reactions, stoichiometry, atomic structure and history which includes alpha, beta, gamma radiation, but not electronic configuration.
February Test: Quantum Theory, Electronic structure, orbital notation, dot notation, Coulomb's Law, periodic behavior, specific heat, heat of phase changes, molar heat of fusion, molar heat of vaporization, graphs of phase changes, plus January topics Review.
March Test: Chemical bonding, molecular structure, simple isomers, intermolecular attractions, redox but not balancing redox equations, kinetic theory, solids, liquids, gases, gas laws, gas Stoichiometry, mole fraction as applied to gases, plus January and February topics Review.
April Test: solutions, use of solubility rules, reaction rates, chemical equilibrium, entropy, reaction spontaneity, Keq, acids, bases, salts, net ionic equations, thermo chemistry, $\Delta \mathrm{H}$, Hess's law, radioactive decay reactions, plus January, February, and March topics Review.

Dates for 2018 Season

Thursday February 8, 2018
Thursday March 8, 2018 Thursday April 12, 2018
All areas and schools must complete the April exam and mail in the results
by April 28th, 2018
New Jersey Science League
PO Box 65 Stewartsville, NJ 08886-0065
phone \# 908-213-8923 fax \# 908-213-9391 email: newjsl@ptd.net Web address: http://entnet.com/~personal/njscil/html/

What is to be mailed back to our office?
PLEASE RETURN THE AREA RECORD AND ALL TEAM MEMBER SCANTRONS
(ALL STUDENTS PLACING 1ST, 2ND, 3RD, AND 4TH).
If you return Scantrons of alternates, then label them as ALTERNATES.

Dates for 2019 Season

Thursday January 10, 2019 Thursday February 7, 2019
Thursday March 7, 2019 Thursday April 11, 2019

New Jersey Science League - Chemistry I Exam
 March 8, 2018 PINK TEST Corrections:

Choose the answer that best completes the statement or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheets is a table of the activity series of the elements. Please PRINT your name, school, area and which test you are taking on to the scan-tron.

1. What is the mass in grams of 5 copper atoms?
a. 317.8 g
b. $7.65 \times 10^{-24} \mathrm{~g}$
c. $6.022 \times 10^{23} \mathrm{~g}$
d. $5.28 \times 10^{-22} \mathrm{~g}$
2. A chloride of rhenium (\#75) contains 63.6% rhenium. What is the formula of this compound?
a. ReCl
b. ReCl_{3}
c. ReCl_{5}
d. $\mathrm{Re}_{2} \mathrm{Cl}_{3}$
3. Nitric oxide, NO , is made from a reaction between ammonia and oxygen as follows:
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
What mass in grams of NO can be produced from 6.82 g of NH_{3} ?
a. 3.87 g
b. 12.0 g
c. 6.82 g
d. 18.0 g
4. In the following balanced equation, chlorine is

$$
2 \mathrm{Cs}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CsCl}_{(\mathrm{s})}
$$

a. The reducing agent
c. Oxidized
b. The oxidizing agent
d. The electron donor
5. A sample of helium gas is placed in a container fitted with a piston as pictured below. Which process will cause the piston to move away from the base?
a. Heating the helium
b. Removing some of the helium from the container
c. Turning the container on its side
d. All of the above

Base \uparrow
6. Calculate the density of molecular nitrogen gas at STP.
a. $0.625 \mathrm{~g} / \mathrm{L}$
b. $\quad 0.800 \mathrm{~g} / \mathrm{L}$
c. $1.25 \mathrm{~g} / \mathrm{L}$
d. $1.60 \mathrm{~g} / \mathrm{L}$
7. What would happen to the average kinetic energy of the molecules of a gas sample if the temperature was increased from $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$?
a. It would double
b. It would increase
c. It would become half the original value
d. It would decrease
e. Two of these
8. Which of the following sets of elements is arranged in order of decreasing electronegativity?
a. $\mathrm{Cl}, \mathrm{S}, \mathrm{Se}$
c. $\mathrm{Br}, \mathrm{Cl}, \mathrm{S}$
b. $\mathrm{F}, \mathrm{B}, \mathrm{O}$
d. Be, C, N
9. Which of the following BEST explains the relatively low melting point of covalent molecular substances?
a. Covalent molecular materials rely on weak electrostatic forces holding the ions together.
b. The "sea" of electrons between the atoms creates relatively weak bonding
c. The intermolecular forces between the molecules are weak compared to ionic or covalent bonds.
d. The similar electronegativity of the atoms causes repulsions between the molecules
10. How many hydrogen atoms must bond to silicon to give it an octet of valence electrons?
a. 1
b. 2
c. 3
d. 4
11. Which of the following correctly represents the Lewis structure for PH_{3} ?
$H: P: H$
a.

b.

d.
12. Which of the following is most volatile?

$$
\mathrm{H}_{2} \mathrm{O} \quad \mathrm{NH}_{3} \quad \mathrm{CH}_{4}
$$

a. $\mathrm{H}_{2} \mathrm{O}$
c. CH_{4}
b. NH_{3}
d. none of the above are volatile
13. Vaporization is
a. endothermic
c. isothermic
b. exothermic
d. metaphysical
14. What is the volume, in liters, occupied by 1.73 moles of N_{2} gas at 0.992 atm pressure and temperature of $75^{\circ} \mathrm{C}$?
a. $\quad 10.7 \mathrm{~L}$
b. $\quad 33.8 \mathrm{~L}$
c. 49.8 L
d. $\quad 52.2 \mathrm{~L}$
15. On a cold winter day, a steel hand rail feels colder than a wooden hand rail of identical size.

The best explanation for this observation is: All full credit. No ans are correct. C of steel is about $0.49 \mathrm{j} / \mathrm{gC}$ while wood is $1.7 \mathrm{j} / \mathrm{gC}$. The concept is energy transfer. Steel transfers heat faster than wood.
a. the specific heat capacity of steel is higher than the specific heat capacity of wood
b. the specific heat capacity of steel is lower than the specific heat capacity of wood
c. Steel has a better ability to resist changes in temperature than wood
d. the mass of the steel is less than the mass of the wood
16. When an excited electron in an atom moves from the ground state, the electron
a. absorbs energy as it moves to a higher energy state.
b. absorbs energy as it moves to a lower energy state.
c. emits energy as it moves to a higher energy state.
d. emits energy as it moves to a lower energy state.
17. Which of the following statements about intermolecular forces is incorrect?
a. They must be overcome in order for molecules to escape from the liquid state into the vapor state.
b. They are much weaker than intramolecular forces
c. They are electrostatic in origin.
d. They occur within molecules rather than between molecules
18. A gaseous mixture at a total pressure of 1.50 atm contains equal molar amounts of He, Ne, and Ar. At constant temperature CO_{2} gas is added to the mixture until the total pressure is 3.00 atm . Which of the following is a correct statement concerning partial pressures after the CO_{2} addition?
a. The partial pressure of Ar has doubled.
b. The partial pressure of CO_{2} is three times that of Ne .
c. All four gases have equal partial pressures.
d. The partial pressure of He, Ne and Ar are each cut in half
19. Why does the air pressure inside the tires of a car increase when the car is driven?
a. Some of the air has leaked out
b. The air particles collide with the tire after the car is in motion
c. The air particles inside the tire increase their speed because their temperature rises
d. The atmosphere compresses the tire
20. Quicklime, CaO, is produced by the thermal decomposition of calcium carbonate, CaCO_{3}. The balanced reaction is as follows:

$$
\mathrm{CaCO}_{3(\mathrm{~s})} \rightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

Calculate the volume in liters of CO_{2} at STP produced when 152 g of CaCO_{3} is decomposed.
a. 34.0 L
b. 22.4 L
c. 66.9 L
d. 100 L
21. Arrange the following compounds in decreasing freezing point order from highest to lowest. The freezing pt. of the following compounds is expected to decrease in this order

a. I $>$ II $>$ III $>$ IV
b. III $>$ I $>$ II $>$ IV
c. III $>$ II $>$ IV $>$ I
d. IV $>$ II $>$ III $>$ I
22. Which structural formula is incorrect?

a.

b.

c.

d.
23. The graph below represents the relationship between atomic radii, in picometers, and increasing atomic number for elements in Group 15 (5A).

Which element is most metallic?
a. A
b. B
c. D
d. E

Atomic Number
24. Which graph best shows the relationship between Kelvin temperature and average kinetic energy?

a.

b.

c.

d.
25. The graph below represents the uniform cooling of a substance, starting in the gaseous phase. During which interval are the particles in the substance only in the liquid state?
a. AB
b. BC
c. CD
d. DE

Periodic Table and Chemistry Formulae Updated 3-12-2018

$\begin{array}{\|c\|} \hline 58 \\ \mathrm{Ce} \\ \hline 140.1 \\ \hline \end{array}$	$\begin{array}{\|c} 59 \\ \mathrm{Pr} \\ 140.9 \\ \hline \end{array}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 144.2 \\ \hline \end{gathered}$	$\begin{aligned} & 61 \\ & \text { Pm } \\ & (145) \\ & \hline \end{aligned}$	$\begin{gathered} 62 \\ \text { Sm } \\ 150.4 \\ \hline \end{gathered}$	$\begin{gathered} 63 \\ \mathrm{Eu} \\ 152.0 \\ \hline \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.3 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 65 \\ \text { Tb } \\ 158.9 \\ \hline \end{array}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \\ \hline \end{gathered}$	$\begin{gathered} 67 \\ \mathrm{Ho} \\ 164.9 \\ \hline \end{gathered}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.3 \end{gathered}$	$\begin{gathered} 69 \\ \mathrm{Tm} \\ 168.9 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 70 \\ \mathbf{Y b} \\ 173.0 \\ \hline \end{array}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 175.0 \\ \hline \end{gathered}$	Lanthanide Series
$\begin{aligned} & 90 \\ & \text { Th } \\ & 232.0 \\ & \hline \end{aligned}$	$\begin{gathered} 91 \\ \mathrm{~Pa} \\ 231.0 \\ \hline \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.0 \end{gathered}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \\ & (237) \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \\ & (244) \end{aligned}$	$\begin{aligned} & 95 \\ & \text { Am } \\ & (243) \end{aligned}$	$\begin{aligned} & 96 \\ & \text { Cm } \\ & (247) \end{aligned}$	$\begin{aligned} & 97 \\ & \text { Bk } \\ & (247) \end{aligned}$	$\begin{aligned} & 98 \\ & \text { Cf } \\ & (251) \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \\ & (252) \end{aligned}$	$\begin{aligned} & 100 \\ & \text { Fm } \\ & (257) \end{aligned}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \\ & (258) \end{aligned}$	$\begin{aligned} & 102 \\ & \mathrm{No} \\ & (259) \end{aligned}$	$\begin{aligned} & 103 \\ & \mathbf{L r} \\ & (262) \end{aligned}$	Actinide Series

CHEMISTRY FORMULAS

$\begin{gathered} \begin{array}{c} \text { GASES, LIQUIDS, } \\ \text { SOLUTIONS } \\ \mathrm{PV}=\mathrm{nRT} \end{array} \\ \begin{array}{c} \left(\mathrm{P}+\mathrm{n}^{2} \mathrm{a}\right)(\mathrm{V}-\mathrm{nb})=\mathrm{nRT} \\ \mathrm{~V}^{2} \end{array} \\ \mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {total }} \bullet \mathrm{X}_{\mathrm{A}} \\ \mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+ \\ \mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \\ \text { Kelvin }={ }^{\circ} \mathrm{C}+273 \\ \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\ \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \\ \underline{\mathrm{P}}_{1} \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \underline{\mathrm{~V}}_{2} \end{gathered}$	$\begin{gathered} \mathrm{d}=\frac{\mathrm{m}}{\mathrm{~V}} \\ \mathrm{u}_{\mathrm{mms}}=\sqrt{\frac{3 k t}{m}}=\sqrt{\frac{3 R T}{M}} \\ \mathrm{KE}_{\text {per molecule }}=\frac{\mathrm{mv}^{2}}{2} \\ \mathrm{KE}_{\text {per mole }}=\frac{3 \mathrm{RT}}{2} \\ \frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}} \\ \mathrm{M}, \text { molarity }=\text { moles solute } \\ \text { liter of solution } \end{gathered}$	```P = pressure \(\mathrm{V}=\) volume \(\mathrm{T}=\) Temperature \(\mathrm{n}=\) number of moles \(\mathrm{d}=\) density \(\mathrm{m}=\) mass \(\mathrm{v}=\) velocity where \(\mathrm{X}_{\mathrm{A}}=\) moles A total moles \(\mathrm{u}_{\mathrm{rms}}=\) root-mean-square-root KE = Kinetic energy \(r\) = rate of effusion \(\mathrm{M}=\) Molar mass \(\pi=\) osmotic pressure \(\mathrm{i}=\) van't Hoff factor \(\mathrm{K}_{\mathrm{f}}=\) molal freezing point constant \(\mathrm{K}_{\mathrm{b}}=\) molal boiling point constant \(\mathrm{Q}=\) reaction quotient I =current in amperes \(\mathrm{q}=\) charge in coulombs \(\mathrm{t}=\) time \(\mathrm{E}^{0}=\) standard reduction potential Keq \(=\) equilibrium constant```	

ATOMIC STRUCTURE	$\mathrm{E}=$ energy	OXIDATION-REDUCTION
$\Delta \mathrm{E}=\mathrm{h} v$	$v=$ frequency	ELECTROCHEMISTRY
$\mathrm{c}=\mathrm{v} \lambda$	$\lambda=$ wavelength	
	$\mathrm{p}=$ momentum	$\mathrm{Q}=[\mathrm{C}]^{\mathrm{C}}[\mathrm{D}]^{\mathrm{d}}$
$\lambda=\underline{h}$	$\mathrm{v}=$ velocity	[A] ${ }^{\text {a }}$ B] ${ }^{\text {b }}$
m v	$\mathrm{n}=$ principal quantum number	where $\mathrm{a} \mathrm{B}+\mathrm{bB} \leftrightarrow \mathrm{cC}+\mathrm{dD}$
	$\mathrm{c}=$ speed of light $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	
$\mathrm{p}=\mathrm{mv}$	$\begin{gathered} \mathrm{h}=\text { Planck's constant }=6.63 \times 10^{-34} \text { Joule s } \\ \mathrm{k}=\text { Boltzmann } \end{gathered}$	$\begin{gathered} I=q / t \quad I=\text { amperes, } q=\text { charge in coulombs, } \\ t=\text { time in seconds. } \end{gathered}$
$\mathrm{E}_{\mathrm{n}}=\frac{-2.178 \times 10^{-18}}{\mathrm{n}^{2}} \text { joule }$	$\begin{gathered} \text { constant }=1.38 \times 10^{-23} \text { joule } / \mathrm{K} \\ \text { Avogadro's number }=6.02 \times 10^{23} \\ \text { molecules } / \text { mole } \end{gathered}$	$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{\mathrm{RT} \ln \mathrm{Q}}{\mathrm{n} \mathfrak{I}}=\mathrm{E}_{\text {cell }}^{0}-\frac{0.0592 \log \mathrm{Q} @ 25^{\circ} \mathrm{C}}{\mathrm{n}}$
	coulomb	$\log \mathrm{K}=\frac{\mathrm{nE}}{} \mathrm{E}^{0}$
	1 electron volt/atom $=96.5 \times 10^{23} \mathrm{kj} / \mathrm{mole}$	1 Faraday $\mathfrak{I}=0.056500$ coulombs $/$ mole

KINETICS EQUATIONS

$A_{o}-A=k t \mathrm{~A}_{0}$ is initial concentration, amount.

$$
\ln \frac{A_{o}}{A}=k t
$$

$$
\frac{1}{A}-\frac{1}{A_{o}}=k t
$$

$$
\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

$$
\mathrm{q}=\mathrm{mC} \mathrm{C} \Delta \mathrm{~T}
$$

$$
\mathrm{C}_{\mathrm{p}}=\underline{\Delta H}
$$

$$
\Delta \mathrm{T}
$$

$$
\mathrm{q}=\mathrm{mH}_{\mathrm{f}}
$$

$$
\mathrm{q}=\mathrm{mH}_{\mathrm{v}}
$$

$$
\Delta \mathrm{U}=\Delta \mathrm{H}-\mathrm{P} \Delta \mathrm{~V}
$$

$\mathrm{S}^{0}=$ standard entropy
$\mathrm{H}^{0}=$ standard enthalpy
$\mathrm{G}^{0}=$ standard free energy
$\mathrm{E}^{0}=$ standard reduction
potential
$\mathrm{T}=$ temperature
$\mathrm{q}=$ heat
$\mathrm{c}=$ specific heat capacity
$\mathrm{C}_{\mathrm{p}}=$ molar heat capacity at constant pressure
1 faraday $\mathfrak{I}=96,500$ coulombs/mole
$\mathrm{C}_{\text {water }}=\frac{4.18 \text { joule }}{\mathrm{g} \mathrm{K}}$ g K
Water $\mathrm{H}_{\mathrm{f}}=\frac{330 \text { joules }}{\text { gram }}$
Water $\mathrm{H}_{\mathrm{v}}=\underline{2260 \text { joules }}$ gram
$\Delta U=$ change internal energy of a system
$\Delta \mathrm{H}=$ change in energy of a system
$-\mathrm{P} \Delta \mathrm{V}=$ work of gases
1liter-atm $=101.325 \mathrm{~J}$

Metal Activity Series	
Metal	Metal Ion
Li	Li^{+1}
K	\mathbf{K}^{+1}
Ba	$\mathrm{Ba}{ }^{+2}$
Ca	Ca^{+2}
Na	Na^{+1}
Mg	Mg^{+2}
A1	Al^{+3}
Mn	Mn^{+2}
Zn	Zn^{+2}
Cr	Cr^{+3}
Fe	Fe^{+2}
Co	Co^{+2}
Ni	$\mathrm{Ni}{ }^{+2}$
Sn	Sn^{+2}
Pb	Pb^{+2}
H_{2}	$2 \mathrm{H}^{+1}$
Cu	Cu^{+2}
Ag	Ag^{+1}
Hg	Hg^{+2}
Pt	Pt^{+2}
Au	Au^{+3}

Chemistry I Answer Key PINK TEST

Date: March 8, 2018 Corrections
Deadline: All March exam results must be post marked by March $16^{\text {th }}$ or scan the record sheet and email to newjsl@ptd.net or the scores will not count.

1.	D	6.	C	11.	D	16.	A	21.	D
2.	B	7.	B	12.	C	17.	D	22.	D
3.	B	8.	A	13.	A	18.	B	23.	D
4.	B	9.	C	14.	C	19.	C	24.	A
5.	A	10.	D	15.	B All full credit	20.	A	25.	C

CHEMISTRY 1 For Honor's, Enriched or College Prep. Not for AP or Second year students. 25 multiple choice questions per exam. Try to include drawings, lab data, and graphs on each test.
All questions deal with the applications of chemical concepts not just memorization of ideas or steps.
January Test: scientific method, measurement, factor label conversions, properties, graphing, mixtures, compounds, formulas, mole, weight percent, chemical reactions, using the metal and non-metal activity series for writing chemical reactions, types of reactions, stoichiometry, atomic structure and history which includes alpha, beta, gamma radiation, but not electronic configuration.
February Test: Quantum Theory, Electronic structure, orbital notation, dot notation, Coulomb’s Law, periodic behavior, specific heat, heat of phase changes, molar heat of fusion, molar heat of vaporization, graphs of phase changes, plus January topics Review.
March Test: Chemical bonding, molecular structure, simple isomers, intermolecular attractions, redox but not balancing redox equations, kinetic theory, solids, liquids, gases, gas laws, gas Stoichiometry, mole fraction as applied to gases, plus January and February topics Review.
April Test: solutions, use of solubility rules, reaction rates, chemical equilibrium, entropy, reaction spontaneity, Keq, acids, bases, salts, net ionic equations, thermo chemistry, $\Delta \mathrm{H}$, Hess's law, radioactive decay reactions, plus January, February, and March topics Review.

Dates 2018 Season
Thursday March 8, 2018 Thursday April 12, 2018
All areas and schools must complete the April exam and mail in the results by April 28 ${ }^{\text {th }}, 2017$
New Jersey Science League
PO Box 65 Stewartsville, NJ 08886-0065
phone \# 908-213-8923 fax \# 908-213-9391 email: newisl@ptd.net
Web address: http://entnet.com/~personal/njscil/html/
What is to be mailed back to our office?
PLEASE RETURN THE AREA RECORD AND ALL TEAM MEMBER SCANTRONS (ALL STUDENTS PLACING $1^{\text {ST }}, 2^{\mathrm{ND}}, 3^{\mathrm{RD}}$, AND $4^{\text {TH }}$).
If you return scantrons of alternates, then label them as ALTERNATES.

New Jersey Science League - Chemistry I Exam No Corrections
 APRIL 12, 2018 PINK TEST

Choose the answer that best completes the statement or questions below and fill in the appropriate response on the form. If you change an answer, be sure to completely erase your first choice. You may use the given periodic table and formula sheet as well as a calculator. On the formula sheets is a table of the activity series of the elements. Please PRINT your name, school, area and which test you are taking on to the scan-tron.

1. If the density of an unknown gas Z is $4.50 \mathrm{~g} / \mathrm{L}$ at STP, what is the molar mass of gas Z ?
a. $0.201 \mathrm{~g} / \mathrm{mol}$
b. $5.00 \mathrm{~g} / \mathrm{mol}$
c. $26.9 \mathrm{~g} / \mathrm{mol}$
d. $101 \mathrm{~g} / \mathrm{mol}$
2. What volume of air is needed to completely burn 1.0 mole of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ at STP. Assume that the air is composed of 21.0% by volume O_{2}

$$
\begin{array}{ll}
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} & \\
\text { a. } 112 \mathrm{~L} & \\
\text { b. } 23.5 \mathrm{~L} & \\
\text { c. } 533 \mathrm{~L} \\
\text { d. } 22.4 \mathrm{~L}
\end{array}
$$

3. A 50.0 gram sample of potassium chlorate is dissolved in 200 g of water at $100^{\circ} \mathrm{C}$. The solution is cooled to $30.0^{\circ} \mathrm{C}$. Using the graph below determine how many grams of precipitate will form?
a. 10 g
b. 30 g
c. 20 g
d. 40 g

4. A student is assigned the task of determining the number of moles of water in one mole of $\mathrm{MgCl}_{2} \bullet \mathrm{n}_{2} \mathrm{O}$. The student collects the data shown in the following table.
Determine the value of n.

Mass of empty container	20.676 g
Initial mass of sample + container	25.825 g
Mass of sample and container after heating	24.411 g

a. 2
b. 3
c. 4
d. 5
5. A mixture of KClO_{3} and KCl is heated and the KClO_{3} decomposes according to the following equation:

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

The following data was obtained:

Mass of mixture before heating	5.238 g
Mass of mixture after heating	3.972 g

Calculate the percent of KClO_{3} in the mixture.
a. 61.7%
b. 24.2%
c. 75.8%
d. 72.0%
6. Water has quite a few unusual properties. Which of the following is not one of the properties of water at room temperature?
a. Water is a liquid at room temperature, unlike most compounds with similar molecular weights.
b. The density of solid water is greater than the density of liquid water
c. Water has a high heat capacity or specific heat
d. Water is a universal solvent, capable of dissolving many different compounds
7. A vinegar solution reads $8 \%(\mathrm{v} / \mathrm{v})$ acetic acid. What does this mean in terms of concentration of acetic acid?
a. 8 mL of pure acetic acid in every 100 mL of solution
b. 8 g of pure acetic acid in every 100 mL of acetic acid
c. 8 mL of pure water in every 100 mL of acetic acid
d. 8 mL of pure acetic acid in every 100 mL of solvent
8. Which gas sample will occupy the most volume at STP?
a. 2.0 mol of NH_{3}
b. 3.0 mol of H_{2}
c. 4.0 mol of O_{2}
d. 1.0 mol of CO_{2}
9. 2.0 mol of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ contains \qquad mol of oxygen atoms
a. 12.0
b. 3.0
c. 6.0
d. 2.0
10. 10.0 g of a metallic element is found to contain 0.4113 mol of that element. Which metal must it be?
a. Mg
c. Ca
b. K
d. Cs
11. Which of the following 0.20 M solutions will not form a precipitate when mixed with an equal volume of $0.20 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$?
a. CaS
b. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
c. $\mathrm{NH}_{4} \mathrm{Cl}$
d. $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
12. Consider the following reaction: $2 \mathrm{Al}_{(\mathrm{s})}+6 \mathrm{HCl}_{(\mathrm{aq)}} \rightarrow 2 \mathrm{AlCl}_{3(\mathrm{aq})}+3 \mathrm{H}_{2(\mathrm{~g})}$ A 0.040 mole piece of aluminum reacted completely in 20 s . The rate of formation of hydrogen gas is:
a. $0.0013 \mathrm{~mol} / \mathrm{s}$
b. $0.0030 \mathrm{~mol} / \mathrm{s}$
c. $0.0020 \mathrm{~mol} / \mathrm{s}$
d. $0.0060 \mathrm{~mol} / \mathrm{s}$
13. Consider the following reaction:

$$
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

What is the equilibrium constant expression for the reaction?
a. $\mathrm{Keq}=\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]$
c. $\mathrm{Keq}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$
b. $\mathrm{Keq}=\frac{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}$
d. $\mathrm{Keq}=\frac{1}{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$
14. For the following reaction, which of the following is a conjugate acid-base pair?

$$
\mathrm{HC}_{2} \mathrm{O}_{4}^{-}(\mathrm{aq)})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}{ }_{(\mathrm{aq})}^{2-}
$$

a. $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$and $\mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$and $\mathrm{H}_{3} \mathrm{O}^{+}$
c. $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
d. $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
15. The equilibrium constant for the gas phase reaction
$2 \mathrm{NH}_{3(\mathrm{~g})} \rightleftharpoons \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}$
is $\mathrm{Keq}=230$ at $300^{\circ} \mathrm{C}$. At $300^{\circ} \mathrm{C}$ which one of the following statements is true at equilibrium?
a. The reactant predominates.
b. The products predominate.
c. Only products are present.
d. Only the reactant is present.
16. Which of the following processes should have $\Delta \mathrm{S}<0$?
a. $\mathrm{CaCO}_{3(\mathrm{~s})} \rightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
b. $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
c. $2 \mathrm{NO}_{2(\mathrm{~g})} \rightarrow \quad \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$
d. $\mathrm{NaCl}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}$
17. The combustion of methane can be written as $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+$ heat. Which of the following statements best describes this process?
a. It is endothermic because it absorbs heat.
b. It is endothermic because it releases heat.
c. It is exothermic because it absorbs heat.
d. It is exothermic because it releases heat
18. Sodium reacts violently with water according to the equation below.
$2 \mathrm{Na}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 2 \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}$
The resulting solution has a higher temperature than the water prior to the addition of sodium. What are the signs of $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ for this reaction?
a. $\Delta \mathrm{H}^{\circ}$ is negative and $\Delta \mathrm{S}^{\circ}$ is negative
b. $\Delta \mathrm{H}^{\circ}$ is positive and $\Delta \mathrm{S}^{\circ}$ is negative
c. $\Delta \mathrm{H}^{\circ}$ is negative and $\Delta \mathrm{S}^{\circ}$ is positive
d. $\Delta \mathrm{H}^{\circ}$ is positive and $\Delta \mathrm{S}^{\circ}$ is positive
19. The balanced net ionic equation for precipitation of CaCO_{3} when aqueous solutions of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and CaCl_{2} are mixed is \qquad .
a. $2 \mathrm{Na}^{+}{ }_{\text {(aq) }}+\mathrm{CO}_{3}{ }^{2-}{ }^{-}{ }^{(\mathrm{qq})} \rightarrow \quad \mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}$
b. $2 \mathrm{Na}^{+}{ }_{\text {(aq) }}+2 \mathrm{Cl}_{\text {(aq) }}^{-} \rightarrow 2 \mathrm{NaCl}_{\text {(aq) }}$
c. $\mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}$
d. $\mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3(\mathrm{~s})}$
20. What is the energy required to evaporate two moles of liquid water given the following equations?

$$
\begin{array}{lll}
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow & 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=-483.6 \mathrm{~kJ} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow & 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-571.6 \mathrm{~kJ}
\end{array}
$$

a. 44.0 kJ
b. 88.0 kJ
c. 527.6 kJ
d. 1055.2 kJ
21. What is the $\Delta \mathrm{H}$ value for an exothermic energy change?
a. Always negative
b. Always positive
c. Could be positive or negative
d. Depends on the potential energy of the reactants
22. Which of the following statements is true?
a. In an endothermic process heat is transferred from the surroundings to the system.
b. In an exothermic process heat is transferred from the surroundings to the system.
c. The surroundings will feel cooler in an exothermic process.
d. The surroundings will feel warmer in an endothermic process.
23. ${ }^{99}$ Mo decays to form ${ }^{99} \mathrm{Tc}$. The type of radioactive decay observed is
a. a neutron
c. an alpha particles
b. a beta particle
d. a gamma particle
24. In which of the following pairs of substances are both members of the pair salts?
a. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and BaSO_{4}
b. NaCl and NaOH
c. BaBr_{2} and KCl
d. HNO_{3} and KOH
25. In a particular reaction between copper and silver, 12.7 g Cu produces 38.1 g Ag . What is the percent yield of silver in this reaction?

$$
\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}
$$

a. 56.7%
b. 77.3 \%
c. 88.2%
d. 176%

Periodic Table and Chemistry Formulae Updated 3-12-2018

$\begin{array}{\|c\|} \hline 58 \\ \mathrm{Ce} \\ \hline 140.1 \\ \hline \end{array}$	$\begin{array}{\|c} 59 \\ \mathrm{Pr} \\ 140.9 \\ \hline \end{array}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 144.2 \\ \hline \end{gathered}$	$\begin{aligned} & 61 \\ & \text { Pm } \\ & (145) \\ & \hline \end{aligned}$	$\begin{gathered} 62 \\ \text { Sm } \\ 150.4 \\ \hline \end{gathered}$	$\begin{gathered} 63 \\ \mathrm{Eu} \\ 152.0 \\ \hline \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.3 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 65 \\ \text { Tb } \\ 158.9 \\ \hline \end{array}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \\ \hline \end{gathered}$	$\begin{gathered} 67 \\ \mathrm{Ho} \\ 164.9 \\ \hline \end{gathered}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.3 \end{gathered}$	$\begin{gathered} 69 \\ \mathrm{Tm} \\ 168.9 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 70 \\ \mathbf{Y b} \\ 173.0 \\ \hline \end{array}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 175.0 \\ \hline \end{gathered}$	Lanthanide Series
$\begin{aligned} & 90 \\ & \text { Th } \\ & 232.0 \\ & \hline \end{aligned}$	$\begin{gathered} 91 \\ \mathrm{~Pa} \\ 231.0 \\ \hline \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.0 \end{gathered}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \\ & (237) \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \\ & (244) \end{aligned}$	$\begin{aligned} & 95 \\ & \text { Am } \\ & (243) \end{aligned}$	$\begin{aligned} & 96 \\ & \text { Cm } \\ & (247) \end{aligned}$	$\begin{aligned} & 97 \\ & \text { Bk } \\ & (247) \end{aligned}$	$\begin{aligned} & 98 \\ & \text { Cf } \\ & (251) \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \\ & (252) \end{aligned}$	$\begin{aligned} & 100 \\ & \text { Fm } \\ & (257) \end{aligned}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \\ & (258) \end{aligned}$	$\begin{aligned} & 102 \\ & \mathrm{No} \\ & (259) \end{aligned}$	$\begin{aligned} & 103 \\ & \mathbf{L r} \\ & (262) \end{aligned}$	Actinide Series

CHEMISTRY FORMULAS

$\begin{gathered} \begin{array}{c} \text { GASES, LIQUIDS, } \\ \text { SOLUTIONS } \\ \mathrm{PV}=\mathrm{nRT} \end{array} \\ \begin{array}{c} \left(\mathrm{P}+\mathrm{n}^{2} \mathrm{a}\right)(\mathrm{V}-\mathrm{nb})=\mathrm{nRT} \\ \mathrm{~V}^{2} \end{array} \\ \mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {total }} \bullet \mathrm{X}_{\mathrm{A}} \\ \mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+ \\ \mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \\ \text { Kelvin }={ }^{\circ} \mathrm{C}+273 \\ \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\ \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \\ \underline{\mathrm{P}}_{1} \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \underline{\mathrm{~V}}_{2} \end{gathered}$	$\begin{gathered} \mathrm{d}=\frac{\mathrm{m}}{\mathrm{~V}} \\ \mathrm{u}_{\mathrm{mms}}=\sqrt{\frac{3 k t}{m}}=\sqrt{\frac{3 R T}{M}} \\ \mathrm{KE}_{\text {per molecule }}=\frac{\mathrm{mv}^{2}}{2} \\ \mathrm{KE}_{\text {per mole }}=\frac{3 \mathrm{RT}}{2} \\ \frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}} \\ \mathrm{M}, \text { molarity }=\text { moles solute } \\ \text { liter of solution } \end{gathered}$	```P = pressure \(\mathrm{V}=\) volume \(\mathrm{T}=\) Temperature \(\mathrm{n}=\) number of moles \(\mathrm{d}=\) density \(\mathrm{m}=\) mass \(\mathrm{v}=\) velocity where \(\mathrm{X}_{\mathrm{A}}=\) moles A total moles \(\mathrm{u}_{\mathrm{rms}}=\) root-mean-square-root KE = Kinetic energy \(r\) = rate of effusion \(\mathrm{M}=\) Molar mass \(\pi=\) osmotic pressure \(\mathrm{i}=\) van't Hoff factor \(\mathrm{K}_{\mathrm{f}}=\) molal freezing point constant \(\mathrm{K}_{\mathrm{b}}=\) molal boiling point constant \(\mathrm{Q}=\) reaction quotient I =current in amperes \(\mathrm{q}=\) charge in coulombs \(\mathrm{t}=\) time \(\mathrm{E}^{0}=\) standard reduction potential Keq \(=\) equilibrium constant```	

ATOMIC STRUCTURE	$\mathrm{E}=$ energy	OXIDATION-REDUCTION
$\Delta \mathrm{E}=\mathrm{h} v$	$v=$ frequency	ELECTROCHEMISTRY
$\mathrm{c}=\mathrm{v} \lambda$	$\lambda=$ wavelength	
	$\mathrm{p}=$ momentum	$\mathrm{Q}=[\mathrm{C}]^{\mathrm{C}}[\mathrm{D}]^{\mathrm{d}}$
$\lambda=\underline{h}$	$\mathrm{v}=$ velocity	[A] ${ }^{\text {a }}$ B] ${ }^{\text {b }}$
m v	$\mathrm{n}=$ principal quantum number	where $\mathrm{a} \mathrm{B}+\mathrm{bB} \leftrightarrow \mathrm{cC}+\mathrm{dD}$
	$\mathrm{c}=$ speed of light $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	
$\mathrm{p}=\mathrm{mv}$	$\begin{gathered} \mathrm{h}=\text { Planck's constant }=6.63 \times 10^{-34} \text { Joule s } \\ \mathrm{k}=\text { Boltzmann } \end{gathered}$	$\begin{gathered} I=q / t \quad I=\text { amperes, } q=\text { charge in coulombs, } \\ t=\text { time in seconds. } \end{gathered}$
$\mathrm{E}_{\mathrm{n}}=\frac{-2.178 \times 10^{-18}}{\mathrm{n}^{2}} \text { joule }$	$\begin{gathered} \text { constant }=1.38 \times 10^{-23} \text { joule } / \mathrm{K} \\ \text { Avogadro's number }=6.02 \times 10^{23} \\ \text { molecules } / \text { mole } \end{gathered}$	$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{\mathrm{RT} \ln \mathrm{Q}}{\mathrm{n} \mathfrak{I}}=\mathrm{E}_{\text {cell }}^{0}-\frac{0.0592 \log \mathrm{Q} @ 25^{\circ} \mathrm{C}}{\mathrm{n}}$
	coulomb	$\log \mathrm{K}=\frac{\mathrm{nE}}{} \mathrm{E}^{0}$
	1 electron volt/atom $=96.5 \times 10^{23} \mathrm{kj} / \mathrm{mole}$	1 Faraday $\mathfrak{I}=0.056500$ coulombs $/$ mole

KINETICS EQUATIONS

$A_{o}-A=k t \mathrm{~A}_{0}$ is initial concentration, amount.

$$
\ln \frac{A_{o}}{A}=k t
$$

$$
\frac{1}{A}-\frac{1}{A_{o}}=k t
$$

$$
\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

$$
\mathrm{q}=\mathrm{mC} \mathrm{C} \Delta \mathrm{~T}
$$

$$
\mathrm{C}_{\mathrm{p}}=\underline{\Delta H}
$$

$$
\Delta \mathrm{T}
$$

$$
\mathrm{q}=\mathrm{mH}_{\mathrm{f}}
$$

$$
\mathrm{q}=\mathrm{mH}_{\mathrm{v}}
$$

$$
\Delta \mathrm{U}=\Delta \mathrm{H}-\mathrm{P} \Delta \mathrm{~V}
$$

$\mathrm{S}^{0}=$ standard entropy
$\mathrm{H}^{0}=$ standard enthalpy
$\mathrm{G}^{0}=$ standard free energy
$\mathrm{E}^{0}=$ standard reduction
potential
$\mathrm{T}=$ temperature
$\mathrm{q}=$ heat
$\mathrm{c}=$ specific heat capacity
$\mathrm{C}_{\mathrm{p}}=$ molar heat capacity at constant pressure
1 faraday $\mathfrak{I}=96,500$ coulombs/mole
$\mathrm{C}_{\text {water }}=\frac{4.18 \text { joule }}{\mathrm{g} \mathrm{K}}$ g K
Water $\mathrm{H}_{\mathrm{f}}=\frac{330 \text { joules }}{\text { gram }}$
Water $\mathrm{H}_{\mathrm{v}}=\underline{2260 \text { joules }}$ gram
$\Delta U=$ change internal energy of a system
$\Delta \mathrm{H}=$ change in energy of a system
$-\mathrm{P} \Delta \mathrm{V}=$ work of gases
1liter-atm $=101.325 \mathrm{~J}$

Metal Activity Series	
Metal	Metal Ion
Li	Li^{+1}
K	\mathbf{K}^{+1}
Ba	$\mathrm{Ba}{ }^{+2}$
Ca	Ca^{+2}
Na	Na^{+1}
Mg	Mg^{+2}
A1	Al^{+3}
Mn	Mn^{+2}
Zn	Zn^{+2}
Cr	Cr^{+3}
Fe	Fe^{+2}
Co	Co^{+2}
Ni	$\mathrm{Ni}{ }^{+2}$
Sn	Sn^{+2}
Pb	Pb^{+2}
H_{2}	$2 \mathrm{H}^{+1}$
Cu	Cu^{+2}
Ag	Ag^{+1}
Hg	Hg^{+2}
Pt	Pt^{+2}
Au	Au^{+3}

All schools and areas must finish the April exam and post mark or scan all results by April $30^{\text {th }}$.

1.	D	6.	B	11.	C	16.	C	21.	A
2.	C	7.	A	12.	B	17.	D	22.	A
3.	B	8.	C	13.	D	18.	C	23.	B
4.	A	9.	A	14.	D	19.	D	24.	C
5.	A	10.	A	15.	B	20.	B	25.	C

CHEMISTRY I (No AP or second year students in this category.)

CHEMISTRY 1 For Honor's, Enriched or College Prep. Not for AP or Second year students. 25 multiple choice questions per exam. Try to include drawings, lab data, and graphs on each test.
All questions deal with the applications of chemical concepts not just memorization of ideas or steps.
January Test: scientific method, measurement, factor label conversions, properties, graphing, mixtures, compounds, formulas, mole, weight percent, chemical reactions, using the metal and non-metal activity series for writing chemical reactions, types of reactions, stoichiometry, atomic structure and history which includes alpha, beta, gamma radiation, but not electronic configuration.
February Test: Quantum Theory, Electronic structure, orbital notation, dot notation, Coulomb's Law, periodic behavior, specific heat, heat of phase changes, molar heat of fusion, molar heat of vaporization, graphs of phase changes, plus January topics Review.
March Test: Chemical bonding, molecular structure, simple isomers, intermolecular attractions, redox but not balancing redox equations, kinetic theory, solids, liquids, gases, gas laws, gas Stoichiometry, mole fraction as applied to gases, plus January and February topics Review.
April Test: solutions, use of solubility rules, reaction rates, chemical equilibrium, entropy, reaction spontaneity, Keq, acids, bases, salts, net ionic equations, thermo chemistry, $\Delta \mathrm{H}$, Hess's law, radioactive decay reactions, plus January, February, and March topics Review.

Dates 2018 Season

Thursday April 12, 2018
All schools and areas must finish the April exam and post mark or scan all results by April $30^{\text {th }}$. New Jersey Science League
PO Box 65 Stewartsville, NJ 08886-0065
phone \# 908-213-8923 fax \# 908-213-9391 email: newisl@ptd.net
Web address: http://entnet.com/~personal/njscil/html/
What is to be mailed back to our office?
PLEASE RETURN THE AREA RECORD AND ALL TEAM MEMBER SCANTRONS (ALL STUDENTS PLACING $1^{\text {ST }}, 2^{\mathrm{ND}}, 3^{\mathrm{RD}}$, AND 4^{TH}).
If you return scantrons of alternates, then label them as ALTERNATES.

Dates for 2019 Season

Thursday January 10, 2019 Thursday February 14, 2019
Thursday March 14, 2019 Thursday April 11, 2019

